1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
//! 用于堆分配的指针类型。
//!
//! [`Box<T>`],简称为 'box',在 Rust 中提供了最简单的堆分配形式。Boxes 为这个分配提供所有权,并在离开作用域时丢弃它们的内容。Boxes 还确保它们分配的字节数永远不会超过 `isize::MAX` 字节。
//!
//! # Examples
//!
//! 通过创建 [`Box`],将值从栈移动到堆:
//!
//! ```
//! let val: u8 = 5;
//! let boxed: Box<u8> = Box::new(val);
//! ```
//!
//! 通过 [解引用][dereferencing] 将值从 [`Box`] 移回栈:
//!
//! ```
//! let boxed: Box<u8> = Box::new(5);
//! let val: u8 = *boxed;
//! ```
//!
//! 创建递归数据结构:
//!
//! ```
//! #[derive(Debug)]
//! enum List<T> {
//!     Cons(T, Box<List<T>>),
//!     Nil,
//! }
//!
//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
//! println!("{:?}", list);
//! ```
//!
//! 这将打印 `Cons(1, Cons(2, Nil))`。
//!
//! 递归结构必须为 boxed,因为如果 `Cons` 的定义如下所示:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! 这是行不通的。这是因为 `List` 的大小取决于列表中有多少个元素,因此我们不知道为 `Cons` 分配多少内存。通过引入具有定义大小的 [`Box<T>`],我们知道 `Cons` 的大小。
//!
//! # 内存布局
//!
//! 对于非零大小的值,[`Box`] 将使用 [`Global`] 分配器进行分配。假定与分配器一起使用的 [`Layout`] 对于该类型是正确的,则在 [`Box`] 和使用 [`Global`] 分配器分配的裸指针之间进行双向转换是有效的。
//!
//! 更准确地说,已使用 `Layout::for_value(&*value)` 与 [`Global`] 分配器一起分配的 `value: *mut T` 可以使用 [`Box::<T>::from_raw(value)`] 转换为 box。
//! 相反,可以使用带有 [`Layout::for_value(&*value)`] 的 [`Global`] 分配器重新分配支持从 [`Box::<T>::into_raw`] 获得的 `value: *mut T` 的内存。
//!
//! 对于零大小的值,`Box` 指针对于读取和写入仍必须为 [有效的][valid],并且必须充分对齐。
//! 特别是,将任何对齐的非零整数字面量强制转换为裸指针都会产生有效的指针,但是指向先前分配的内存 (由于释放后的指针) 的指针无效。
//! 如果不能使用 `Box::new`,建议将 Box 生成到 ZST 的推荐方法是使用 [`ptr::NonNull::dangling`]。
//!
//! 只要 `T: Sized`,就可以保证将 `Box<T>` 表示为单个指针,并且还与 C 指针 ABI 兼容 (即 C 类型 `T*`)。
//! 这意味着,如果您有从 C 调用的外部 "C" Rust 函数,则可以使用 `Box<T>` 类型定义那些 Rust 函数,并在 C 侧使用 `T*` 作为对应类型。
//! 例如,考虑下面的 C 头文件,该标头声明创建和销毁某种 `Foo` 值的函数:
//!
//! ```c
//! /* C 头文件 */
//!
//! /* 将所有权归还给调用者 */
//! struct Foo* foo_new(void);
//!
//! /* 从调用者那里获得所有权; 使用 null 调用时无操作 */
//! void foo_delete(struct Foo*);
//! ```
//!
//! 这两个函数可以在 Rust 中实现,如下所示。在这里,来自 C 的 `struct Foo*` 类型被转换为 `Box<Foo>`,它捕获了所有权约束。
//! 还要注意,由于 `Box<Foo>` 不能为 null,因此 `foo_delete` 的 nullable 参数在 Rust 中表示为 `Option<Box<Foo>>`。
//!
//! ```
//! #[repr(C)]
//! pub struct Foo;
//!
//! #[no_mangle]
//! pub extern "C" fn foo_new() -> Box<Foo> {
//!     Box::new(Foo)
//! }
//!
//! #[no_mangle]
//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
//! ```
//!
//! 即使 `Box<T>` 具有与 C 指针相同的表示形式和 C ABI,但这并不意味着您可以将任意 `T*` 转换为 `Box<T>` 并期望一切正常。
//! `Box<T>` 值将始终是完全对齐的非空指针。此外,`Box<T>` 的析构函数将尝试使用分配器释放该值。通常,最佳实践是仅对来自分配器的指针使用 `Box<T>`。
//!
//! 重要:至少目前,对于在 C 语言中定义但从 Rust 中调用的函数,应该避免使用 `Box<T>` 类型。在这些情况下,您应该尽可能直接地镜像 C 类型。
//! 如 [rust-lang/unsafe-code-guidelines#198][ucg#198] 中所述,使用 C 定义仅使用 `T*` 的 `Box<T>` 这样的类型可能导致未定义的行为。
//!
//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
//! [dereferencing]: core::ops::Deref
//! [`Box::<T>::from_raw(value)`]: Box::from_raw
//! [`Global`]: crate::alloc::Global
//! [`Layout`]: crate::alloc::Layout
//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
//! [valid]: ptr#safety
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!
//!

#![stable(feature = "rust1", since = "1.0.0")]

use core::any::Any;
use core::borrow;
use core::cmp::Ordering;
use core::convert::{From, TryFrom};
use core::fmt;
use core::future::Future;
use core::hash::{Hash, Hasher};
#[cfg(not(no_global_oom_handling))]
use core::iter::FromIterator;
use core::iter::{FusedIterator, Iterator};
use core::marker::{Unpin, Unsize};
use core::mem;
use core::ops::{
    CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver,
};
use core::pin::Pin;
use core::ptr::{self, Unique};
use core::stream::Stream;
use core::task::{Context, Poll};

#[cfg(not(no_global_oom_handling))]
use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw};
use crate::alloc::{AllocError, Allocator, Global, Layout};
#[cfg(not(no_global_oom_handling))]
use crate::borrow::Cow;
use crate::raw_vec::RawVec;
#[cfg(not(no_global_oom_handling))]
use crate::str::from_boxed_utf8_unchecked;
#[cfg(not(no_global_oom_handling))]
use crate::vec::Vec;

/// 用于堆分配的指针类型。
///
/// 有关更多信息,请参见 [模块级文档](../../std/boxed/index.html)。
#[lang = "owned_box"]
#[fundamental]
#[stable(feature = "rust1", since = "1.0.0")]
// `Box` 结构体的声明必须与 `alloc::alloc::box_free` 函数保持同步,否则会发生 ICE。
// 有关更多详细信息,请参见 `box_free` 上的注释。
//
pub struct Box<
    T: ?Sized,
    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
>(Unique<T>, A);

impl<T> Box<T> {
    /// 在堆上分配内存,然后将 `x` 放入其中。
    ///
    /// 如果 `T` 的大小为零,则实际上不会分配。
    ///
    /// # Examples
    ///
    /// ```
    /// let five = Box::new(5);
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[inline(always)]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[must_use]
    pub fn new(x: T) -> Self {
        box x
    }

    /// 创建一个具有未初始化内容的新 box。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let mut five = Box::<u32>::new_uninit();
    ///
    /// let five = unsafe {
    ///     // 延迟初始化:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "new_uninit", issue = "63291")]
    #[must_use]
    #[inline]
    pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
        Self::new_uninit_in(Global)
    }

    /// 创建一个具有未初始化内容的新 `Box`,并用 `0` 字节填充内存。
    ///
    ///
    /// 有关正确和不正确使用此方法的示例,请参见 [`MaybeUninit::zeroed`][zeroed]。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let zero = Box::<u32>::new_zeroed();
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0)
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    ///
    #[cfg(not(no_global_oom_handling))]
    #[inline]
    #[unstable(feature = "new_uninit", issue = "63291")]
    #[must_use]
    pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
        Self::new_zeroed_in(Global)
    }

    /// 创建一个新的 `Pin<Box<T>>`。
    /// 如果 `T` 未实现 `Unpin`,则 `x` 将被固定在内存中并且无法移动。
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "pin", since = "1.33.0")]
    #[must_use]
    #[inline(always)]
    pub fn pin(x: T) -> Pin<Box<T>> {
        (box x).into()
    }

    /// 在堆上分配内存,然后将 `x` 放入其中,如果分配失败,则返回错误
    ///
    ///
    /// 如果 `T` 的大小为零,则实际上不会分配。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// let five = Box::try_new(5)?;
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new(x: T) -> Result<Self, AllocError> {
        Self::try_new_in(x, Global)
    }

    /// 在堆上创建一个具有未初始化内容的新 box,如果分配失败,则返回错误
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api, new_uninit)]
    ///
    /// let mut five = Box::<u32>::try_new_uninit()?;
    ///
    /// let five = unsafe {
    ///     // 延迟初始化:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
        Box::try_new_uninit_in(Global)
    }

    /// 创建一个具有未初始化内容的新 `Box`,堆中的内存由 `0` 字节填充
    ///
    ///
    /// 有关正确和不正确使用此方法的示例,请参见 [`MaybeUninit::zeroed`][zeroed]。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api, new_uninit)]
    ///
    /// let zero = Box::<u32>::try_new_zeroed()?;
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    ///
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
        Box::try_new_zeroed_in(Global)
    }
}

impl<T, A: Allocator> Box<T, A> {
    /// 在给定的分配器中分配内存,然后将 `x` 放入其中。
    ///
    /// 如果 `T` 的大小为零,则实际上不会分配。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let five = Box::new_in(5, System);
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[must_use]
    #[inline]
    pub fn new_in(x: T, alloc: A) -> Self {
        let mut boxed = Self::new_uninit_in(alloc);
        unsafe {
            boxed.as_mut_ptr().write(x);
            boxed.assume_init()
        }
    }

    /// 在给定的分配器中分配内存,然后将 `x` 放入其中,如果分配失败,则返回错误
    ///
    ///
    /// 如果 `T` 的大小为零,则实际上不会分配。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let five = Box::try_new_in(5, System)?;
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> {
        let mut boxed = Self::try_new_uninit_in(alloc)?;
        unsafe {
            boxed.as_mut_ptr().write(x);
            Ok(boxed.assume_init())
        }
    }

    /// 在提供的分配器中创建一个具有未初始化内容的新 box。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api, new_uninit)]
    ///
    /// use std::alloc::System;
    ///
    /// let mut five = Box::<u32, _>::new_uninit_in(System);
    ///
    /// let five = unsafe {
    ///     // 延迟初始化:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[cfg(not(no_global_oom_handling))]
    #[must_use]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> {
        let layout = Layout::new::<mem::MaybeUninit<T>>();
        // NOTE: 优先选择不匹配 unwrap_or_else 的匹配项,因为有时闭包不是内联的。
        // 那将使代码更大。
        match Box::try_new_uninit_in(alloc) {
            Ok(m) => m,
            Err(_) => handle_alloc_error(layout),
        }
    }

    /// 在提供的分配器中创建一个具有未初始化内容的新 box,如果分配失败,则返回错误
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api, new_uninit)]
    ///
    /// use std::alloc::System;
    ///
    /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
    ///
    /// let five = unsafe {
    ///     // 延迟初始化:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> {
        let layout = Layout::new::<mem::MaybeUninit<T>>();
        let ptr = alloc.allocate(layout)?.cast();
        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
    }

    /// 创建一个具有未初始化内容的新 `Box`,使用提供的分配器中的 `0` 字节填充内存。
    ///
    ///
    /// 有关正确和不正确使用此方法的示例,请参见 [`MaybeUninit::zeroed`][zeroed]。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api, new_uninit)]
    ///
    /// use std::alloc::System;
    ///
    /// let zero = Box::<u32, _>::new_zeroed_in(System);
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0)
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    ///
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[cfg(not(no_global_oom_handling))]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[must_use]
    pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> {
        let layout = Layout::new::<mem::MaybeUninit<T>>();
        // NOTE: 优先选择不匹配 unwrap_or_else 的匹配项,因为有时闭包不是内联的。
        // 那将使代码更大。
        match Box::try_new_zeroed_in(alloc) {
            Ok(m) => m,
            Err(_) => handle_alloc_error(layout),
        }
    }

    /// 创建一个具有未初始化内容的新 `Box`,使用提供的分配器中的 `0` 字节填充内存,如果分配失败,则返回错误,
    ///
    ///
    /// 有关正确和不正确使用此方法的示例,请参见 [`MaybeUninit::zeroed`][zeroed]。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api, new_uninit)]
    ///
    /// use std::alloc::System;
    ///
    /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    ///
    ///
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> {
        let layout = Layout::new::<mem::MaybeUninit<T>>();
        let ptr = alloc.allocate_zeroed(layout)?.cast();
        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
    }

    /// 创建一个新的 `Pin<Box<T, A>>`。
    /// 如果 `T` 未实现 `Unpin`,则 `x` 将被固定在内存中并且无法移动。
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[must_use]
    #[inline(always)]
    pub fn pin_in(x: T, alloc: A) -> Pin<Self>
    where
        A: 'static,
    {
        Self::new_in(x, alloc).into()
    }

    /// 将 `Box<T>` 转换为 `Box<[T]>`
    ///
    /// 这种转换不会在堆上分配,而是就地进行。
    #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
    pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
        let (raw, alloc) = Box::into_raw_with_allocator(boxed);
        unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
    }

    /// 消耗 `Box`,返回包装的值。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(box_into_inner)]
    ///
    /// let c = Box::new(5);
    ///
    /// assert_eq!(Box::into_inner(c), 5);
    /// ```
    #[unstable(feature = "box_into_inner", issue = "80437")]
    #[inline]
    pub fn into_inner(boxed: Self) -> T {
        *boxed
    }
}

impl<T> Box<[T]> {
    /// 创建一个具有未初始化内容的新 boxed 切片。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
    ///
    /// let values = unsafe {
    ///     // 延迟初始化:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "new_uninit", issue = "63291")]
    #[must_use]
    pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
        unsafe { RawVec::with_capacity(len).into_box(len) }
    }

    /// 创建一个具有未初始化内容的新 boxed 切片,并用 `0` 字节填充内存。
    ///
    ///
    /// 有关正确和不正确使用此方法的示例,请参见 [`MaybeUninit::zeroed`][zeroed]。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let values = Box::<[u32]>::new_zeroed_slice(3);
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [0, 0, 0])
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    ///
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "new_uninit", issue = "63291")]
    #[must_use]
    pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
        unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
    }

    /// 创建一个具有未初始化内容的新 boxed 切片。
    /// 如果分配失败,则返回一个错误
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api, new_uninit)]
    ///
    /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
    /// let values = unsafe {
    ///     // 延迟初始化:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3]);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
        unsafe {
            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
                Ok(l) => l,
                Err(_) => return Err(AllocError),
            };
            let ptr = Global.allocate(layout)?;
            Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len))
        }
    }

    /// 创建一个具有未初始化内容的新 boxed 切片,并用 `0` 字节填充内存。
    /// 如果分配失败,则返回一个错误
    ///
    /// 有关正确和不正确使用此方法的示例,请参见 [`MaybeUninit::zeroed`][zeroed]。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api, new_uninit)]
    ///
    /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [0, 0, 0]);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    ///
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
        unsafe {
            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
                Ok(l) => l,
                Err(_) => return Err(AllocError),
            };
            let ptr = Global.allocate_zeroed(layout)?;
            Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len))
        }
    }
}

impl<T, A: Allocator> Box<[T], A> {
    /// 使用提供的分配器中未初始化的内容创建一个新的 boxed 切片。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api, new_uninit)]
    ///
    /// use std::alloc::System;
    ///
    /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
    ///
    /// let values = unsafe {
    ///     // 延迟初始化:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[must_use]
    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
        unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
    }

    /// 使用提供的分配器中未初始化的内容创建一个新的 boxed 切片,并用 `0` 字节填充内存。
    ///
    ///
    /// 有关正确和不正确使用此方法的示例,请参见 [`MaybeUninit::zeroed`][zeroed]。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api, new_uninit)]
    ///
    /// use std::alloc::System;
    ///
    /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [0, 0, 0])
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    ///
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[must_use]
    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
        unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
    }
}

impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
    /// 转换为 `Box<T, A>`。
    ///
    /// # Safety
    ///
    /// 与 [`MaybeUninit::assume_init`] 一样,由调用者负责确保该值确实处于初始化状态。
    ///
    /// 在内容尚未完全初始化时调用此方法会立即导致未定义的行为。
    ///
    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let mut five = Box::<u32>::new_uninit();
    ///
    /// let five: Box<u32> = unsafe {
    ///     // 延迟初始化:
    ///     five.as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    ///
    ///
    #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub unsafe fn assume_init(self) -> Box<T, A> {
        let (raw, alloc) = Box::into_raw_with_allocator(self);
        unsafe { Box::from_raw_in(raw as *mut T, alloc) }
    }
}

impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
    /// 转换为 `Box<[T], A>`。
    ///
    /// # Safety
    ///
    /// 与 [`MaybeUninit::assume_init`] 一样,由调用者负责确保值确实处于初始化状态。
    ///
    /// 在内容尚未完全初始化时调用此方法会立即导致未定义的行为。
    ///
    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    ///
    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
    ///
    /// let values = unsafe {
    ///     // 延迟初始化:
    ///     values[0].as_mut_ptr().write(1);
    ///     values[1].as_mut_ptr().write(2);
    ///     values[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    ///
    ///
    #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub unsafe fn assume_init(self) -> Box<[T], A> {
        let (raw, alloc) = Box::into_raw_with_allocator(self);
        unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
    }
}

impl<T: ?Sized> Box<T> {
    /// 从裸指针构造一个 box。
    ///
    /// 调用此函数后,结果 `Box` 拥有裸指针。
    /// 具体来说,`Box` 析构函数将调用 `T` 的析构函数并释放分配的内存。
    /// 为了安全起见,必须根据 `Box` 所使用的 [内存布局][memory layout] 分配内存。
    ///
    ///
    /// # Safety
    ///
    /// 此函数不安全,因为使用不当可能会导致内存问题。
    /// 例如,如果在同一裸指针上两次调用该函数,则可能会出现 double-free。
    ///
    /// 安全条件在 [内存布局][memory layout] 部分中进行了描述。
    ///
    /// # Examples
    ///
    /// 重新创建以前使用 [`Box::into_raw`] 转换为裸指针的 `Box`:
    ///
    /// ```
    /// let x = Box::new(5);
    /// let ptr = Box::into_raw(x);
    /// let x = unsafe { Box::from_raw(ptr) };
    /// ```
    ///
    /// 使用二进制分配器从头开始手动创建 `Box`:
    ///
    /// ```
    /// use std::alloc::{alloc, Layout};
    ///
    /// unsafe {
    ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
    ///     // 通常,需要 .write 以避免尝试销毁 `ptr` 以前的内容,尽管对于这个简单的示例 `*ptr = 5` 也可以工作。
    /////
    /////
    ///     ptr.write(5);
    ///     let x = Box::from_raw(ptr);
    /// }
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    /// [`Layout`]: crate::Layout
    #[stable(feature = "box_raw", since = "1.4.0")]
    #[inline]
    pub unsafe fn from_raw(raw: *mut T) -> Self {
        unsafe { Self::from_raw_in(raw, Global) }
    }
}

impl<T: ?Sized, A: Allocator> Box<T, A> {
    /// 从给定分配器中的裸指针构造 box。
    ///
    /// 调用此函数后,结果 `Box` 拥有裸指针。
    /// 具体来说,`Box` 析构函数将调用 `T` 的析构函数并释放分配的内存。
    /// 为了安全起见,必须根据 `Box` 所使用的 [内存布局][memory layout] 分配内存。
    ///
    ///
    /// # Safety
    ///
    /// 此函数不安全,因为使用不当可能会导致内存问题。
    /// 例如,如果在同一裸指针上两次调用该函数,则可能会出现 double-free。
    ///
    /// # Examples
    ///
    /// 重新创建以前使用 [`Box::into_raw_with_allocator`] 转换为裸指针的 `Box`:
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let x = Box::new_in(5, System);
    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
    /// ```
    ///
    /// 使用系统分配器从头开始手动创建 `Box`:
    ///
    /// ```
    /// #![feature(allocator_api, slice_ptr_get)]
    ///
    /// use std::alloc::{Allocator, Layout, System};
    ///
    /// unsafe {
    ///     let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
    ///     // 通常,需要 .write 以避免尝试销毁 `ptr` 以前的内容,尽管对于这个简单的示例 `*ptr = 5` 也可以工作。
    /////
    /////
    ///     ptr.write(5);
    ///     let x = Box::from_raw_in(ptr, System);
    /// }
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    /// [`Layout`]: crate::Layout
    ///
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
        Box(unsafe { Unique::new_unchecked(raw) }, alloc)
    }

    /// 消耗 `Box`,并返回一个包装的裸指针。
    ///
    /// 指针将正确对齐且不为空。
    ///
    /// 调用此函数后,调用者将负责先前由 `Box` 管理的内存。
    /// 特别地,考虑到 `Box` 使用的 [内存布局][memory layout],调用者应正确销毁 `T` 并释放内存。
    /// 最简单的方法是使用 [`Box::from_raw`] 函数将裸指针转换回 `Box`,从而允许 `Box` 析构函数执行清理。
    ///
    ///
    /// Note: 这是一个关联函数,这意味着您必须将其称为 `Box::into_raw(b)` 而不是 `b.into_raw()`。
    /// 这样就不会与内部类型的方法发生冲突。
    ///
    /// # Examples
    /// 使用 [`Box::from_raw`] 将裸指针转换回 `Box` 以进行自动清理:
    ///
    /// ```
    /// let x = Box::new(String::from("Hello"));
    /// let ptr = Box::into_raw(x);
    /// let x = unsafe { Box::from_raw(ptr) };
    /// ```
    ///
    /// 通过显式运行析构函数并释放内存来进行手动清理:
    ///
    /// ```
    /// use std::alloc::{dealloc, Layout};
    /// use std::ptr;
    ///
    /// let x = Box::new(String::from("Hello"));
    /// let p = Box::into_raw(x);
    /// unsafe {
    ///     ptr::drop_in_place(p);
    ///     dealloc(p as *mut u8, Layout::new::<String>());
    /// }
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    ///
    ///
    ///
    #[stable(feature = "box_raw", since = "1.4.0")]
    #[inline]
    pub fn into_raw(b: Self) -> *mut T {
        Self::into_raw_with_allocator(b).0
    }

    /// 消耗 `Box`,返回包装的裸指针和分配器。
    ///
    /// 指针将正确对齐且不为空。
    ///
    /// 调用此函数后,调用者将负责先前由 `Box` 管理的内存。
    /// 特别地,考虑到 `Box` 使用的 [内存布局][memory layout],调用者应正确销毁 `T` 并释放内存。
    /// 最简单的方法是使用 [`Box::from_raw_in`] 函数将裸指针转换回 `Box`,从而允许 `Box` 析构函数执行清理。
    ///
    ///
    /// Note: 这是一个关联函数,这意味着您必须将其称为 `Box::into_raw_with_allocator(b)` 而不是 `b.into_raw_with_allocator()`。
    /// 这样就不会与内部类型的方法发生冲突。
    ///
    /// # Examples
    /// 使用 [`Box::from_raw_in`] 将裸指针转换回 `Box` 以进行自动清理:
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let x = Box::new_in(String::from("Hello"), System);
    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
    /// ```
    ///
    /// 通过显式运行析构函数并释放内存来进行手动清理:
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::{Allocator, Layout, System};
    /// use std::ptr::{self, NonNull};
    ///
    /// let x = Box::new_in(String::from("Hello"), System);
    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
    /// unsafe {
    ///     ptr::drop_in_place(ptr);
    ///     let non_null = NonNull::new_unchecked(ptr);
    ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
    /// }
    /// ```
    ///
    /// [memory layout]: self#memory-layout
    ///
    ///
    ///
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
        let (leaked, alloc) = Box::into_unique(b);
        (leaked.as_ptr(), alloc)
    }

    #[unstable(
        feature = "ptr_internals",
        issue = "none",
        reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
    )]
    #[inline]
    #[doc(hidden)]
    pub fn into_unique(b: Self) -> (Unique<T>, A) {
        // Box 被 Stacked 借用识别为 "唯一指针",但在内部它是类型系统的裸指针。
        // 将其直接转换为裸指针将不会被视为 "释放" 允许别名原始访问的唯一指针,因此所有裸指针方法都必须通过 `Box::leak`。
        //
        // 将其转换为裸指针的行为是正确的。
        //
        let alloc = unsafe { ptr::read(&b.1) };
        (Unique::from(Box::leak(b)), alloc)
    }

    /// 返回底层分配器的引用。
    ///
    /// Note: 这是一个关联函数,这意味着您必须将其称为 `Box::allocator(&b)` 而不是 `b.allocator()`。
    /// 这样就不会与内部类型的方法发生冲突。
    ///
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn allocator(b: &Self) -> &A {
        &b.1
    }

    /// 消耗并泄漏 `Box`,返回一个可变引用,`&'a mut T`。
    /// 请注意,类型 `T` 必须超过所选的生命周期 `'a`。
    /// 如果类型仅具有静态引用,或者根本没有静态引用,则可以将其选择为 `'static`。
    ///
    /// 该函数主要用于在程序的剩余生命期内保留的数据。
    /// 丢弃返回的引用将导致内存泄漏。
    /// 如果这是不可接受的,则应首先将引用与 [`Box::from_raw`] 函数包装在一起,生成 `Box`。
    ///
    /// 这个 `Box` 可以被丢弃,这将正确销毁 `T` 并释放分配的内存。
    ///
    /// Note: 这是一个关联函数,这意味着您必须将其称为 `Box::leak(b)` 而不是 `b.leak()`。
    /// 这样就不会与内部类型的方法发生冲突。
    ///
    /// # Examples
    ///
    /// 简单用法:
    ///
    /// ```
    /// let x = Box::new(41);
    /// let static_ref: &'static mut usize = Box::leak(x);
    /// *static_ref += 1;
    /// assert_eq!(*static_ref, 42);
    /// ```
    ///
    /// 未定义大小的数据:
    ///
    /// ```
    /// let x = vec![1, 2, 3].into_boxed_slice();
    /// let static_ref = Box::leak(x);
    /// static_ref[0] = 4;
    /// assert_eq!(*static_ref, [4, 2, 3]);
    /// ```
    ///
    ///
    ///
    #[stable(feature = "box_leak", since = "1.26.0")]
    #[inline]
    pub fn leak<'a>(b: Self) -> &'a mut T
    where
        A: 'a,
    {
        unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
    }

    /// 将 `Box<T>` 转换为 `Pin<Box<T>>`
    ///
    /// 这种转换不会在堆上分配,而是就地进行。
    ///
    /// 也可以通过 [`From`] 获得。
    #[unstable(feature = "box_into_pin", issue = "62370")]
    pub fn into_pin(boxed: Self) -> Pin<Self>
    where
        A: 'static,
    {
        // `T: !Unpin` 时,不能移动或更换 `Pin<Box<T>>` 的内部,因此可以安全地直接固定 `Pin<Box<T>>`,而无需任何其他要求。
        //
        //
        unsafe { Pin::new_unchecked(boxed) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
    fn drop(&mut self) {
        // FIXME: 不执行任何操作,当前由编译器执行丢弃。
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Box<T> {
    /// 创建一个 `Box<T>`,其 T 值为 `Default`。
    fn default() -> Self {
        box T::default()
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for Box<[T]> {
    fn default() -> Self {
        Box::<[T; 0]>::new([])
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "default_box_extra", since = "1.17.0")]
impl Default for Box<str> {
    fn default() -> Self {
        unsafe { from_boxed_utf8_unchecked(Default::default()) }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
    /// 返回带有此 box 的 内容的 `clone()` 的新 box。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let y = x.clone();
    ///
    /// // 值是一样的
    /// assert_eq!(x, y);
    ///
    /// // 但它们是独一无二的对象
    /// assert_ne!(&*x as *const i32, &*y as *const i32);
    /// ```
    #[inline]
    fn clone(&self) -> Self {
        // 预分配内存以允许直接写入克隆的值。
        let mut boxed = Self::new_uninit_in(self.1.clone());
        unsafe {
            (**self).write_clone_into_raw(boxed.as_mut_ptr());
            boxed.assume_init()
        }
    }

    /// 将 `source` 的内容复制到 `self`,而不创建新的分配。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let mut y = Box::new(10);
    /// let yp: *const i32 = &*y;
    ///
    /// y.clone_from(&x);
    ///
    /// // 值是一样的
    /// assert_eq!(x, y);
    ///
    /// // 并且没有发生分配
    /// assert_eq!(yp, &*y);
    /// ```
    #[inline]
    fn clone_from(&mut self, source: &Self) {
        (**self).clone_from(&(**source));
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl Clone for Box<str> {
    fn clone(&self) -> Self {
        // 这将复制数据
        let buf: Box<[u8]> = self.as_bytes().into();
        unsafe { from_boxed_utf8_unchecked(buf) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        PartialEq::eq(&**self, &**other)
    }
    #[inline]
    fn ne(&self, other: &Self) -> bool {
        PartialEq::ne(&**self, &**other)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
    #[inline]
    fn lt(&self, other: &Self) -> bool {
        PartialOrd::lt(&**self, &**other)
    }
    #[inline]
    fn le(&self, other: &Self) -> bool {
        PartialOrd::le(&**self, &**other)
    }
    #[inline]
    fn ge(&self, other: &Self) -> bool {
        PartialOrd::ge(&**self, &**other)
    }
    #[inline]
    fn gt(&self, other: &Self) -> bool {
        PartialOrd::gt(&**self, &**other)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        Ord::cmp(&**self, &**other)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
    fn finish(&self) -> u64 {
        (**self).finish()
    }
    fn write(&mut self, bytes: &[u8]) {
        (**self).write(bytes)
    }
    fn write_u8(&mut self, i: u8) {
        (**self).write_u8(i)
    }
    fn write_u16(&mut self, i: u16) {
        (**self).write_u16(i)
    }
    fn write_u32(&mut self, i: u32) {
        (**self).write_u32(i)
    }
    fn write_u64(&mut self, i: u64) {
        (**self).write_u64(i)
    }
    fn write_u128(&mut self, i: u128) {
        (**self).write_u128(i)
    }
    fn write_usize(&mut self, i: usize) {
        (**self).write_usize(i)
    }
    fn write_i8(&mut self, i: i8) {
        (**self).write_i8(i)
    }
    fn write_i16(&mut self, i: i16) {
        (**self).write_i16(i)
    }
    fn write_i32(&mut self, i: i32) {
        (**self).write_i32(i)
    }
    fn write_i64(&mut self, i: i64) {
        (**self).write_i64(i)
    }
    fn write_i128(&mut self, i: i128) {
        (**self).write_i128(i)
    }
    fn write_isize(&mut self, i: isize) {
        (**self).write_isize(i)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "from_for_ptrs", since = "1.6.0")]
impl<T> From<T> for Box<T> {
    /// 将 `T` 转换为 `Box<T>`
    ///
    /// 转换在堆上分配,并将 `t` 从栈移到堆中。
    ///
    ///
    /// # Examples
    ///
    /// ```rust
    /// let x = 5;
    /// let boxed = Box::new(5);
    ///
    /// assert_eq!(Box::from(x), boxed);
    /// ```
    fn from(t: T) -> Self {
        Box::new(t)
    }
}

#[stable(feature = "pin", since = "1.33.0")]
impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
where
    A: 'static,
{
    /// 将 `Box<T>` 转换为 `Pin<Box<T>>`
    ///
    /// 这种转换不会在堆上分配,而是就地进行。
    fn from(boxed: Box<T, A>) -> Self {
        Box::into_pin(boxed)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_from_slice", since = "1.17.0")]
impl<T: Copy> From<&[T]> for Box<[T]> {
    /// 将 `&[T]` 转换为 `Box<[T]>`
    ///
    /// 此转换在堆上分配并执行 `slice` 的副本。
    ///
    /// # Examples
    ///
    /// ```rust
    /// // 创建 &[u8] which 将用于创建 Box<[u8]>
    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
    /// let boxed_slice: Box<[u8]> = Box::from(slice);
    ///
    /// println!("{:?}", boxed_slice);
    /// ```
    fn from(slice: &[T]) -> Box<[T]> {
        let len = slice.len();
        let buf = RawVec::with_capacity(len);
        unsafe {
            ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
            buf.into_box(slice.len()).assume_init()
        }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_from_cow", since = "1.45.0")]
impl<T: Copy> From<Cow<'_, [T]>> for Box<[T]> {
    /// 将 `Cow<'_, [T]>` 转换为 `Box<[T]>`
    ///
    /// 当 `cow` 是 `Cow::Borrowed` 变体时,此转换在堆上分配并复制底层切片。
    /// 否则,它将尝试重用拥有所有权的 `Vec` 的分配。
    ///
    ///
    #[inline]
    fn from(cow: Cow<'_, [T]>) -> Box<[T]> {
        match cow {
            Cow::Borrowed(slice) => Box::from(slice),
            Cow::Owned(slice) => Box::from(slice),
        }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_from_slice", since = "1.17.0")]
impl From<&str> for Box<str> {
    /// 将 `&str` 转换为 `Box<str>`
    ///
    /// 此转换在堆上分配并执行 `s` 的副本。
    ///
    ///
    /// # Examples
    ///
    /// ```rust
    /// let boxed: Box<str> = Box::from("hello");
    /// println!("{}", boxed);
    /// ```
    #[inline]
    fn from(s: &str) -> Box<str> {
        unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_from_cow", since = "1.45.0")]
impl From<Cow<'_, str>> for Box<str> {
    /// 将 `Cow<'_, str>` 转换为 `Box<str>`
    ///
    /// 当 `cow` 是 `Cow::Borrowed` 变体时,此转换在堆上分配并复制底层 `str`。
    /// 否则,它将尝试重用拥有所有权的 `String` 的分配。
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::borrow::Cow;
    ///
    /// let unboxed = Cow::Borrowed("hello");
    /// let boxed: Box<str> = Box::from(unboxed);
    /// println!("{}", boxed);
    /// ```
    ///
    /// ```rust
    /// # use std::borrow::Cow;
    /// let unboxed = Cow::Owned("hello".to_string());
    /// let boxed: Box<str> = Box::from(unboxed);
    /// println!("{}", boxed);
    /// ```
    ///
    ///
    #[inline]
    fn from(cow: Cow<'_, str>) -> Box<str> {
        match cow {
            Cow::Borrowed(s) => Box::from(s),
            Cow::Owned(s) => Box::from(s),
        }
    }
}

#[stable(feature = "boxed_str_conv", since = "1.19.0")]
impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
    /// 将 `Box<str>` 转换为 `Box<[u8]>`
    ///
    /// 这种转换不会在堆上分配,而是就地进行。
    ///
    /// # Examples
    /// ```rust
    /// // 创建一个 Box<str>,该 Box<str> 将用于创建 Box<[u8]>
    /// let boxed: Box<str> = Box::from("hello");
    /// let boxed_str: Box<[u8]> = Box::from(boxed);
    ///
    /// // 创建 &[u8] which 将用于创建 Box<[u8]>
    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
    /// let boxed_slice = Box::from(slice);
    ///
    /// assert_eq!(boxed_slice, boxed_str);
    /// ```
    #[inline]
    fn from(s: Box<str, A>) -> Self {
        let (raw, alloc) = Box::into_raw_with_allocator(s);
        unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_from_array", since = "1.45.0")]
impl<T, const N: usize> From<[T; N]> for Box<[T]> {
    /// 将 `[T; N]` 转换为 `Box<[T]>`
    ///
    /// 此转换将数组移动到新的堆分配的内存中。
    ///
    /// # Examples
    ///
    /// ```rust
    /// let boxed: Box<[u8]> = Box::from([4, 2]);
    /// println!("{:?}", boxed);
    /// ```
    fn from(array: [T; N]) -> Box<[T]> {
        box array
    }
}

#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> {
    type Error = Box<[T]>;

    /// 尝试将 `Box<[T]>` 转换为 `Box<[T; N]>`。
    ///
    /// 转换就地发生,不需要新的内存分配。
    ///
    /// # Errors
    ///
    /// 如果 `boxed_slice.len()` 不等于 `N`,则返回 `Err` 变体中的旧 `Box<[T]>`。
    ///
    ///
    fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
        if boxed_slice.len() == N {
            Ok(unsafe { Box::from_raw(Box::into_raw(boxed_slice) as *mut [T; N]) })
        } else {
            Err(boxed_slice)
        }
    }
}

impl<A: Allocator> Box<dyn Any, A> {
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    /// 尝试将 box 转换为具体类型。
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    ///
    /// fn print_if_string(value: Box<dyn Any>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// let my_string = "Hello World".to_string();
    /// print_if_string(Box::new(my_string));
    /// print_if_string(Box::new(0i8));
    /// ```
    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
        if self.is::<T>() {
            unsafe {
                let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
                Ok(Box::from_raw_in(raw as *mut T, alloc))
            }
        } else {
            Err(self)
        }
    }
}

impl<A: Allocator> Box<dyn Any + Send, A> {
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    /// 尝试将 box 转换为具体类型。
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    ///
    /// fn print_if_string(value: Box<dyn Any + Send>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// let my_string = "Hello World".to_string();
    /// print_if_string(Box::new(my_string));
    /// print_if_string(Box::new(0i8));
    /// ```
    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
        if self.is::<T>() {
            unsafe {
                let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
                Ok(Box::from_raw_in(raw as *mut T, alloc))
            }
        } else {
            Err(self)
        }
    }
}

impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
    #[inline]
    #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")]
    /// 尝试将 box 转换为具体类型。
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    ///
    /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// let my_string = "Hello World".to_string();
    /// print_if_string(Box::new(my_string));
    /// print_if_string(Box::new(0i8));
    /// ```
    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
        if self.is::<T>() {
            unsafe {
                let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
                    Box::into_raw_with_allocator(self);
                Ok(Box::from_raw_in(raw as *mut T, alloc))
            }
        } else {
            Err(self)
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // 无法直接从 Box 提取内部 Uniq,而是将其强制转换为 *const which 别名 (唯一)
        //
        let ptr: *const T = &**self;
        fmt::Pointer::fmt(&ptr, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
    type Target = T;

    fn deref(&self) -> &T {
        &**self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
    fn deref_mut(&mut self) -> &mut T {
        &mut **self
    }
}

#[unstable(feature = "receiver_trait", issue = "none")]
impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
    type Item = I::Item;
    fn next(&mut self) -> Option<I::Item> {
        (**self).next()
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        (**self).size_hint()
    }
    fn nth(&mut self, n: usize) -> Option<I::Item> {
        (**self).nth(n)
    }
    fn last(self) -> Option<I::Item> {
        BoxIter::last(self)
    }
}

trait BoxIter {
    type Item;
    fn last(self) -> Option<Self::Item>;
}

impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
    type Item = I::Item;
    default fn last(self) -> Option<I::Item> {
        #[inline]
        fn some<T>(_: Option<T>, x: T) -> Option<T> {
            Some(x)
        }

        self.fold(None, some)
    }
}

/// 使用 `last()` 的 I 实现而不是默认值的大小 I 的专业化。
///
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> {
    fn last(self) -> Option<I::Item> {
        (*self).last()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
    fn next_back(&mut self) -> Option<I::Item> {
        (**self).next_back()
    }
    fn nth_back(&mut self, n: usize) -> Option<I::Item> {
        (**self).nth_back(n)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
    fn len(&self) -> usize {
        (**self).len()
    }
    fn is_empty(&self) -> bool {
        (**self).is_empty()
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}

#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
impl<Args, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
    type Output = <F as FnOnce<Args>>::Output;

    extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
        <F as FnOnce<Args>>::call_once(*self, args)
    }
}

#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
impl<Args, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
    extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
        <F as FnMut<Args>>::call_mut(self, args)
    }
}

#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
impl<Args, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
    extern "rust-call" fn call(&self, args: Args) -> Self::Output {
        <F as Fn<Args>>::call(self, args)
    }
}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}

#[unstable(feature = "dispatch_from_dyn", issue = "none")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
impl<I> FromIterator<I> for Box<[I]> {
    fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
        iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
    fn clone(&self) -> Self {
        let alloc = Box::allocator(self).clone();
        self.to_vec_in(alloc).into_boxed_slice()
    }

    fn clone_from(&mut self, other: &Self) {
        if self.len() == other.len() {
            self.clone_from_slice(&other);
        } else {
            *self = other.clone();
        }
    }
}

#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
    fn borrow(&self) -> &T {
        &**self
    }
}

#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
    fn borrow_mut(&mut self) -> &mut T {
        &mut **self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
    fn as_ref(&self) -> &T {
        &**self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
    fn as_mut(&mut self) -> &mut T {
        &mut **self
    }
}

/* Nota bene
 *
 *  We could have chosen not to add this impl, and instead have written a
 *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
 *  because Box<T> implements Unpin even when T does not, as a result of
 *  this impl.
 *
 *  We chose this API instead of the alternative for a few reasons:
 *      - Logically, it is helpful to understand pinning in regard to the
 *        memory region being pointed to. For this reason none of the
 *        standard library pointer types support projecting through a pin
 *        (Box<T> is the only pointer type in std for which this would be
 *        safe.)
 *      - It is in practice very useful to have Box<T> be unconditionally
 *        Unpin because of trait objects, for which the structural auto
 *        trait functionality does not apply (e.g., Box<dyn Foo> would
 *        otherwise not be Unpin).
 *
 *  Another type with the same semantics as Box but only a conditional
 *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
 *  could have a method to project a Pin<T> from it.
 */
#[stable(feature = "pin", since = "1.33.0")]
impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}

#[unstable(feature = "generator_trait", issue = "43122")]
impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A>
where
    A: 'static,
{
    type Yield = G::Yield;
    type Return = G::Return;

    fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
        G::resume(Pin::new(&mut *self), arg)
    }
}

#[unstable(feature = "generator_trait", issue = "43122")]
impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>>
where
    A: 'static,
{
    type Yield = G::Yield;
    type Return = G::Return;

    fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
        G::resume((*self).as_mut(), arg)
    }
}

#[stable(feature = "futures_api", since = "1.36.0")]
impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
where
    A: 'static,
{
    type Output = F::Output;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        F::poll(Pin::new(&mut *self), cx)
    }
}

#[unstable(feature = "async_stream", issue = "79024")]
impl<S: ?Sized + Stream + Unpin> Stream for Box<S> {
    type Item = S::Item;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        Pin::new(&mut **self).poll_next(cx)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (**self).size_hint()
    }
}