1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
use super::v128;
use crate::core_arch::simd;

#[cfg(test)]
use stdarch_test::assert_instr;

#[allow(improper_ctypes)]
extern "C" {
    #[link_name = "llvm.wasm.relaxed.swizzle"]
    fn llvm_relaxed_swizzle(a: simd::i8x16, b: simd::i8x16) -> simd::i8x16;
    #[link_name = "llvm.wasm.relaxed.trunc.signed"]
    fn llvm_relaxed_trunc_signed(a: simd::f32x4) -> simd::i32x4;
    #[link_name = "llvm.wasm.relaxed.trunc.unsigned"]
    fn llvm_relaxed_trunc_unsigned(a: simd::f32x4) -> simd::i32x4;
    #[link_name = "llvm.wasm.relaxed.trunc.signed.zero"]
    fn llvm_relaxed_trunc_signed_zero(a: simd::f64x2) -> simd::i32x4;
    #[link_name = "llvm.wasm.relaxed.trunc.unsigned.zero"]
    fn llvm_relaxed_trunc_unsigned_zero(a: simd::f64x2) -> simd::i32x4;

    #[link_name = "llvm.wasm.fma.v4f32"]
    fn llvm_f32x4_fma(a: simd::f32x4, b: simd::f32x4, c: simd::f32x4) -> simd::f32x4;
    #[link_name = "llvm.wasm.fms.v4f32"]
    fn llvm_f32x4_fms(a: simd::f32x4, b: simd::f32x4, c: simd::f32x4) -> simd::f32x4;
    #[link_name = "llvm.wasm.fma.v2f64"]
    fn llvm_f64x2_fma(a: simd::f64x2, b: simd::f64x2, c: simd::f64x2) -> simd::f64x2;
    #[link_name = "llvm.wasm.fms.v2f64"]
    fn llvm_f64x2_fms(a: simd::f64x2, b: simd::f64x2, c: simd::f64x2) -> simd::f64x2;

    #[link_name = "llvm.wasm.laneselect.v16i8"]
    fn llvm_i8x16_laneselect(a: simd::i8x16, b: simd::i8x16, c: simd::i8x16) -> simd::i8x16;
    #[link_name = "llvm.wasm.laneselect.v8i16"]
    fn llvm_i16x8_laneselect(a: simd::i16x8, b: simd::i16x8, c: simd::i16x8) -> simd::i16x8;
    #[link_name = "llvm.wasm.laneselect.v4i32"]
    fn llvm_i32x4_laneselect(a: simd::i32x4, b: simd::i32x4, c: simd::i32x4) -> simd::i32x4;
    #[link_name = "llvm.wasm.laneselect.v2i64"]
    fn llvm_i64x2_laneselect(a: simd::i64x2, b: simd::i64x2, c: simd::i64x2) -> simd::i64x2;

    #[link_name = "llvm.wasm.relaxed.min.v4f32"]
    fn llvm_f32x4_relaxed_min(a: simd::f32x4, b: simd::f32x4) -> simd::f32x4;
    #[link_name = "llvm.wasm.relaxed.min.v2f64"]
    fn llvm_f64x2_relaxed_min(a: simd::f64x2, b: simd::f64x2) -> simd::f64x2;
    #[link_name = "llvm.wasm.relaxed.max.v4f32"]
    fn llvm_f32x4_relaxed_max(a: simd::f32x4, b: simd::f32x4) -> simd::f32x4;
    #[link_name = "llvm.wasm.relaxed.max.v2f64"]
    fn llvm_f64x2_relaxed_max(a: simd::f64x2, b: simd::f64x2) -> simd::f64x2;

    #[link_name = "llvm.wasm.relaxed.q15mulr.signed"]
    fn llvm_relaxed_q15mulr_signed(a: simd::i16x8, b: simd::i16x8) -> simd::i16x8;
    #[link_name = "llvm.wasm.dot.i8x16.i7x16.signed"]
    fn llvm_i16x8_relaxed_dot_i8x16_i7x16_s(a: simd::i8x16, b: simd::i8x16) -> simd::i16x8;
    #[link_name = "llvm.wasm.dot.i8x16.i7x16.add.signed"]
    fn llvm_i32x4_relaxed_dot_i8x16_i7x16_add_s(
        a: simd::i8x16,
        b: simd::i8x16,
        c: simd::i32x4,
    ) -> simd::i32x4;
}

/// `i8x16_swizzle(a, s)` 的轻松版本,它使用 `s` 中的索引从 `a` 中选择 lanes。
///
/// `[0,15]` 范围内的索引将选择 `a` 的第 i 个元素。
/// 如果 `s` 的任何元素的高位被设置 (意味着 128 或更大),则相应的输出 lane 保证为零。
/// 否则,如果 `s` 的元素在 `[16,128)` 范围内,则输出 lane 是
/// 0 或 `a[s[i] % 16]` 取决于实现。
///
///
#[inline]
#[cfg_attr(test, assert_instr(i8x16.relaxed_swizzle))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i8x16.relaxed_swizzle"))]
pub fn i8x16_relaxed_swizzle(a: v128, s: v128) -> v128 {
    unsafe { llvm_relaxed_swizzle(a.as_i8x16(), s.as_i8x16()).v128() }
}

/// `i32x4_trunc_sat_f32x4(a)` 的宽松版本将 `a` 的 `f32` lanes 转换为带符号的 32 位整数。
///
/// 不适合 32 位整数或为 NaN 的值可能具有与 `i32x4_trunc_sat_f32x4` 相同的结果或可能返回 `i32::MIN`。
///
///
#[inline]
#[cfg_attr(test, assert_instr(i32x4.relaxed_trunc_f32x4_s))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i32x4.relaxed_trunc_f32x4_s"))]
pub fn i32x4_relaxed_trunc_f32x4(a: v128) -> v128 {
    unsafe { llvm_relaxed_trunc_signed(a.as_f32x4()).v128() }
}

/// `u32x4_trunc_sat_f32x4(a)` 的宽松版本将 `a` 的 `f32` lanes 转换为无符号 32 位整数。
///
/// 不适合 32 位无符号整数或为 NaN 的值可能具有与 `u32x4_trunc_sat_f32x4` 相同的结果或可能返回 `u32::MAX`。
///
///
#[inline]
#[cfg_attr(test, assert_instr(i32x4.relaxed_trunc_f32x4_u))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i32x4.relaxed_trunc_f32x4_u"))]
pub fn u32x4_relaxed_trunc_f32x4(a: v128) -> v128 {
    unsafe { llvm_relaxed_trunc_unsigned(a.as_f32x4()).v128() }
}

/// `i32x4_trunc_sat_f64x2_zero(a)` 的宽松版本将 `a` 的 `f64` lanes 转换为带符号的 32 位整数,并且高两个 lanes 为零。
///
///
/// 不适合 32 位整数或为 NaN 的值可能具有与 `i32x4_trunc_sat_f32x4` 相同的结果或可能返回 `i32::MIN`。
///
#[inline]
#[cfg_attr(test, assert_instr(i32x4.relaxed_trunc_f64x2_s_zero))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i32x4.relaxed_trunc_f64x2_s_zero"))]
pub fn i32x4_relaxed_trunc_f64x2_zero(a: v128) -> v128 {
    unsafe { llvm_relaxed_trunc_signed_zero(a.as_f64x2()).v128() }
}

/// `u32x4_trunc_sat_f64x2_zero(a)` 的宽松版本将 `a` 的 `f64` lanes 转换为无符号 32 位整数,并且高两个 lanes 为零。
///
///
/// 不适合 32 位无符号整数或为 NaN 的值可能具有与 `u32x4_trunc_sat_f32x4` 相同的结果或可能返回 `u32::MAX`。
///
#[inline]
#[cfg_attr(test, assert_instr(i32x4.relaxed_trunc_f64x2_u_zero))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i32x4.relaxed_trunc_f64x2_u_zero"))]
pub fn u32x4_relaxed_trunc_f64x2_zero(a: v128) -> v128 {
    unsafe { llvm_relaxed_trunc_unsigned_zero(a.as_f64x2()).v128() }
}

/// 使用一次舍入或两次舍入计算 `a * b + c`。
#[inline]
#[cfg_attr(test, assert_instr(f32x4.relaxed_madd))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("f32x4.relaxed_madd"))]
pub fn f32x4_relaxed_madd(a: v128, b: v128, c: v128) -> v128 {
    unsafe { llvm_f32x4_fma(a.as_f32x4(), b.as_f32x4(), c.as_f32x4()).v128() }
}

/// 使用一次舍入或两次舍入计算 `-a * b + c`。
#[inline]
#[cfg_attr(test, assert_instr(f32x4.relaxed_nmadd))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("f32x4.relaxed_nmadd"))]
pub fn f32x4_relaxed_nmadd(a: v128, b: v128, c: v128) -> v128 {
    unsafe { llvm_f32x4_fms(a.as_f32x4(), b.as_f32x4(), c.as_f32x4()).v128() }
}

/// 使用一次舍入或两次舍入计算 `a * b + c`。
#[inline]
#[cfg_attr(test, assert_instr(f64x2.relaxed_madd))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("f64x2.relaxed_madd"))]
pub fn f64x2_relaxed_madd(a: v128, b: v128, c: v128) -> v128 {
    unsafe { llvm_f64x2_fma(a.as_f64x2(), b.as_f64x2(), c.as_f64x2()).v128() }
}

/// 使用一次舍入或两次舍入计算 `-a * b + c`。
#[inline]
#[cfg_attr(test, assert_instr(f64x2.relaxed_nmadd))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("f64x2.relaxed_nmadd"))]
pub fn f64x2_relaxed_nmadd(a: v128, b: v128, c: v128) -> v128 {
    unsafe { llvm_f64x2_fms(a.as_f64x2(), b.as_f64x2(), c.as_f64x2()).v128() }
}

/// `v128_bitselect` 的宽松版本,其中它的行为与 `v128_bitselect` 相同或检查每个 lane `m` 的高位,如果该位为 1,则选择 `a` 的相应 lane,如果为零,则选择 `b` 的 lane。
///
///
/// 如果 `m` 掩码的 lanes 为全一或全零,则此指令与 `v128_bitselect` 相同。
///
///
///
#[inline]
#[cfg_attr(test, assert_instr(i8x16.relaxed_laneselect))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i8x16.relaxed_laneselect"))]
pub fn i8x16_relaxed_laneselect(a: v128, b: v128, m: v128) -> v128 {
    unsafe { llvm_i8x16_laneselect(a.as_i8x16(), b.as_i8x16(), m.as_i8x16()).v128() }
}

/// `v128_bitselect` 的宽松版本,其中它的行为与 `v128_bitselect` 相同或检查每个 lane `m` 的高位,如果该位为 1,则选择 `a` 的相应 lane,如果为零,则选择 `b` 的 lane。
///
///
/// 如果 `m` 掩码的 lanes 为全一或全零,则此指令与 `v128_bitselect` 相同。
///
///
///
#[inline]
#[cfg_attr(test, assert_instr(i16x8.relaxed_laneselect))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i16x8.relaxed_laneselect"))]
pub fn i16x8_relaxed_laneselect(a: v128, b: v128, m: v128) -> v128 {
    unsafe { llvm_i16x8_laneselect(a.as_i16x8(), b.as_i16x8(), m.as_i16x8()).v128() }
}

/// `v128_bitselect` 的宽松版本,其中它的行为与 `v128_bitselect` 相同或检查每个 lane `m` 的高位,如果该位为 1,则选择 `a` 的相应 lane,如果为零,则选择 `b` 的 lane。
///
///
/// 如果 `m` 掩码的 lanes 为全一或全零,则此指令与 `v128_bitselect` 相同。
///
///
///
#[inline]
#[cfg_attr(test, assert_instr(i32x4.relaxed_laneselect))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i32x4.relaxed_laneselect"))]
pub fn i32x4_relaxed_laneselect(a: v128, b: v128, m: v128) -> v128 {
    unsafe { llvm_i32x4_laneselect(a.as_i32x4(), b.as_i32x4(), m.as_i32x4()).v128() }
}

/// `v128_bitselect` 的宽松版本,其中它的行为与 `v128_bitselect` 相同或检查每个 lane `m` 的高位,如果该位为 1,则选择 `a` 的相应 lane,如果为零,则选择 `b` 的 lane。
///
///
/// 如果 `m` 掩码的 lanes 为全一或全零,则此指令与 `v128_bitselect` 相同。
///
///
///
#[inline]
#[cfg_attr(test, assert_instr(i64x2.relaxed_laneselect))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i64x2.relaxed_laneselect"))]
pub fn i64x2_relaxed_laneselect(a: v128, b: v128, m: v128) -> v128 {
    unsafe { llvm_i64x2_laneselect(a.as_i64x2(), b.as_i64x2(), m.as_i64x2()).v128() }
}

/// `f32x4_min` 的宽松版本,即 `f32x4_min` 或 `f32x4_pmin`。
///
#[inline]
#[cfg_attr(test, assert_instr(f32x4.relaxed_min))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("f32x4.relaxed_min"))]
pub fn f32x4_relaxed_min(a: v128, b: v128) -> v128 {
    unsafe { llvm_f32x4_relaxed_min(a.as_f32x4(), b.as_f32x4()).v128() }
}

/// `f32x4_max` 的宽松版本,即 `f32x4_max` 或 `f32x4_pmax`。
///
#[inline]
#[cfg_attr(test, assert_instr(f32x4.relaxed_max))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("f32x4.relaxed_max"))]
pub fn f32x4_relaxed_max(a: v128, b: v128) -> v128 {
    unsafe { llvm_f32x4_relaxed_max(a.as_f32x4(), b.as_f32x4()).v128() }
}

/// `f64x2_min` 的宽松版本,即 `f64x2_min` 或 `f64x2_pmin`。
///
#[inline]
#[cfg_attr(test, assert_instr(f64x2.relaxed_min))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("f64x2.relaxed_min"))]
pub fn f64x2_relaxed_min(a: v128, b: v128) -> v128 {
    unsafe { llvm_f64x2_relaxed_min(a.as_f64x2(), b.as_f64x2()).v128() }
}

/// `f64x2_max` 的宽松版本,即 `f64x2_max` 或 `f64x2_pmax`。
///
#[inline]
#[cfg_attr(test, assert_instr(f64x2.relaxed_max))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("f64x2.relaxed_max"))]
pub fn f64x2_relaxed_max(a: v128, b: v128) -> v128 {
    unsafe { llvm_f64x2_relaxed_max(a.as_f64x2(), b.as_f64x2()).v128() }
}

/// `i16x8_relaxed_q15mulr` 的宽松版本,如果两个 lanes 都是 `i16::MIN`,则结果是 `i16::MIN` 或 `i16::MAX`。
///
#[inline]
#[cfg_attr(test, assert_instr(i16x8.relaxed_q15mulr_s))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i16x8.relaxed_q15mulr_s"))]
pub fn i16x8_relaxed_q15mulr(a: v128, b: v128) -> v128 {
    unsafe { llvm_relaxed_q15mulr_signed(a.as_i16x8(), b.as_i16x8()).v128() }
}

/// 轻松的点积指令。
///
/// 该指令将对 `a` 和 `b` 中的 8 位值进行成对乘积,然后将相邻对累加为 16 位结果,生成最终的 `i16x8` vector。
/// `a` 的字节总是被解释为有符号,而 `b` 中的字节可能被解释为有符号或无符号。
/// 如果 `b` 中的最高位未设置,则无论它是有符号的还是无符号的,该值都是相同的。
///
/// 在某些平台上累加到 16 位值可能会饱和,而在其他平台上它可能会在溢出时回绕。
///
///
///
///
#[inline]
#[cfg_attr(test, assert_instr(i16x8.relaxed_dot_i8x16_i7x16_s))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i16x8.relaxed_dot_i8x16_i7x16_s"))]
pub fn i16x8_relaxed_dot_i8x16_i7x16(a: v128, b: v128) -> v128 {
    unsafe { llvm_i16x8_relaxed_dot_i8x16_i7x16_s(a.as_i8x16(), b.as_i8x16()).v128() }
}

/// 与 [`i16x8_relaxed_dot_i8x16_i7x16`] 类似,不同之处在于中间 `i16x8` 结果被馈送到 `i32x4_extadd_pairwise_i16x8`,然后 `i32x4_add` 将值 `c` 添加到结果中。
///
///
#[inline]
#[cfg_attr(test, assert_instr(i32x4.relaxed_dot_i8x16_i7x16_add_s))]
#[target_feature(enable = "relaxed-simd")]
#[doc(alias("i32x4.relaxed_dot_i8x16_i7x16_add_s"))]
pub fn i32x4_relaxed_dot_i8x16_i7x16_add(a: v128, b: v128, c: v128) -> v128 {
    unsafe {
        llvm_i32x4_relaxed_dot_i8x16_i7x16_add_s(a.as_i8x16(), b.as_i8x16(), c.as_i32x4()).v128()
    }
}

#[cfg(test)]
pub mod tests {
    use super::super::simd128::*;
    use super::*;
    use core::ops::{Add, Div, Mul, Neg, Sub};
    use std;
    use std::fmt::Debug;
    use std::mem::transmute;
    use std::num::Wrapping;
    use std::prelude::v1::*;

    fn compare_bytes(a: v128, b: &[v128]) {
        let a: [u8; 16] = unsafe { transmute(a) };
        if b.iter().any(|b| {
            let b: [u8; 16] = unsafe { transmute(*b) };
            a == b
        }) {
            return;
        }
        eprintln!("input vector {a:?}");
        eprintln!("did not match any output:");
        for b in b {
            eprintln!("  {b:?}");
        }
    }

    #[test]
    fn test_relaxed_swizzle() {
        compare_bytes(
            i8x16_relaxed_swizzle(
                i8x16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),
                i8x16(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1),
            ),
            &[i8x16(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1)],
        );
        compare_bytes(
            i8x16_relaxed_swizzle(
                i8x16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),
                u8x16(0x80, 0xff, 16, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
            ),
            &[
                i8x16(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
                i8x16(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
            ],
        );
    }

    #[test]
    fn test_relaxed_trunc() {
        compare_bytes(
            i32x4_relaxed_trunc_f32x4(f32x4(1.0, 2.0, -1., -4.)),
            &[i32x4(1, 2, -1, -4)],
        );
        compare_bytes(
            i32x4_relaxed_trunc_f32x4(f32x4(f32::NEG_INFINITY, f32::NAN, -0.0, f32::INFINITY)),
            &[
                i32x4(i32::MIN, 0, 0, i32::MAX),
                i32x4(i32::MIN, i32::MIN, 0, i32::MIN),
            ],
        );
        compare_bytes(
            i32x4_relaxed_trunc_f64x2_zero(f64x2(1.0, -3.0)),
            &[i32x4(1, -3, 0, 0)],
        );
        compare_bytes(
            i32x4_relaxed_trunc_f64x2_zero(f64x2(f64::INFINITY, f64::NAN)),
            &[i32x4(i32::MAX, 0, 0, 0), i32x4(i32::MIN, i32::MIN, 0, 0)],
        );

        compare_bytes(
            u32x4_relaxed_trunc_f32x4(f32x4(1.0, 2.0, 5., 100.)),
            &[i32x4(1, 2, 5, 100)],
        );
        compare_bytes(
            u32x4_relaxed_trunc_f32x4(f32x4(f32::NEG_INFINITY, f32::NAN, -0.0, f32::INFINITY)),
            &[
                u32x4(u32::MAX, 0, 0, u32::MAX),
                u32x4(u32::MAX, u32::MAX, 0, u32::MAX),
            ],
        );
        compare_bytes(
            u32x4_relaxed_trunc_f64x2_zero(f64x2(1.0, 3.0)),
            &[u32x4(1, 3, 0, 0)],
        );
        compare_bytes(
            u32x4_relaxed_trunc_f64x2_zero(f64x2(f64::INFINITY, f64::NAN)),
            &[i32x4(i32::MAX, 0, 0, 0), i32x4(i32::MIN, i32::MIN, 0, 0)],
        );
    }

    #[test]
    fn test_madd() {
        let floats = [
            f32::NAN,
            f32::NEG_INFINITY,
            f32::INFINITY,
            1.0,
            2.0,
            -1.0,
            0.0,
            100.3,
            7.8,
            9.4,
        ];
        for &a in floats.iter() {
            for &b in floats.iter() {
                for &c in floats.iter() {
                    let f1 = a * b + c;
                    let f2 = a.mul_add(b, c);
                    compare_bytes(
                        f32x4_relaxed_madd(f32x4(a, a, a, a), f32x4(b, b, b, b), f32x4(c, c, c, c)),
                        &[f32x4(f1, f1, f1, f1), f32x4(f2, f2, f2, f2)],
                    );

                    let f1 = -a * b + c;
                    let f2 = (-a).mul_add(b, c);
                    compare_bytes(
                        f32x4_relaxed_nmadd(
                            f32x4(a, a, a, a),
                            f32x4(b, b, b, b),
                            f32x4(c, c, c, c),
                        ),
                        &[f32x4(f1, f1, f1, f1), f32x4(f2, f2, f2, f2)],
                    );

                    let a = f64::from(a);
                    let b = f64::from(b);
                    let c = f64::from(c);
                    let f1 = a * b + c;
                    let f2 = a.mul_add(b, c);
                    compare_bytes(
                        f64x2_relaxed_madd(f64x2(a, a), f64x2(b, b), f64x2(c, c)),
                        &[f64x2(f1, f1), f64x2(f2, f2)],
                    );
                    let f1 = -a * b + c;
                    let f2 = (-a).mul_add(b, c);
                    compare_bytes(
                        f64x2_relaxed_nmadd(f64x2(a, a), f64x2(b, b), f64x2(c, c)),
                        &[f64x2(f1, f1), f64x2(f2, f2)],
                    );
                }
            }
        }
    }
}