1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
//! `f32` 单精度浮点类型的常量。
//!
//! *[See also the `f32` primitive type](primitive@f32).*
//!
//! `consts` 子模块中提供了数学上有效的数字。
//!
//! 对于直接在此模块中定义的常量 (不同于 `consts` 子模块中定义的常量),新代码应改为使用直接在 `f32` 类型上定义的关联常量。
//!
//!
//!

#![stable(feature = "rust1", since = "1.0.0")]
#![allow(missing_docs)]

#[cfg(test)]
mod tests;

#[cfg(not(test))]
use crate::intrinsics;
#[cfg(not(test))]
use crate::sys::cmath;

#[stable(feature = "rust1", since = "1.0.0")]
#[allow(deprecated, deprecated_in_future)]
pub use core::f32::{
    consts, DIGITS, EPSILON, INFINITY, MANTISSA_DIGITS, MAX, MAX_10_EXP, MAX_EXP, MIN, MIN_10_EXP,
    MIN_EXP, MIN_POSITIVE, NAN, NEG_INFINITY, RADIX,
};

#[cfg(not(test))]
impl f32 {
    /// 返回小于或等于 `self` 的最大整数。
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 3.7_f32;
    /// let g = 3.0_f32;
    /// let h = -3.7_f32;
    ///
    /// assert_eq!(f.floor(), 3.0);
    /// assert_eq!(g.floor(), 3.0);
    /// assert_eq!(h.floor(), -4.0);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn floor(self) -> f32 {
        unsafe { intrinsics::floorf32(self) }
    }

    /// 返回大于或等于 `self` 的最小整数。
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 3.01_f32;
    /// let g = 4.0_f32;
    ///
    /// assert_eq!(f.ceil(), 4.0);
    /// assert_eq!(g.ceil(), 4.0);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn ceil(self) -> f32 {
        unsafe { intrinsics::ceilf32(self) }
    }

    /// 返回最接近 `self` 的整数。
    /// 如果值介于两个整数之间,则舍入 `0.0`。
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 3.3_f32;
    /// let g = -3.3_f32;
    /// let h = -3.7_f32;
    /// let i = 3.5_f32;
    /// let j = 4.5_f32;
    ///
    /// assert_eq!(f.round(), 3.0);
    /// assert_eq!(g.round(), -3.0);
    /// assert_eq!(h.round(), -4.0);
    /// assert_eq!(i.round(), 4.0);
    /// assert_eq!(j.round(), 5.0);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn round(self) -> f32 {
        unsafe { intrinsics::roundf32(self) }
    }

    /// 返回最接近整数的数字。
    /// 将中途个案四舍五入到具有最低有效数字的数字。
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(round_ties_even)]
    ///
    /// let f = 3.3_f32;
    /// let g = -3.3_f32;
    /// let h = 3.5_f32;
    /// let i = 4.5_f32;
    ///
    /// assert_eq!(f.round_ties_even(), 3.0);
    /// assert_eq!(g.round_ties_even(), -3.0);
    /// assert_eq!(h.round_ties_even(), 4.0);
    /// assert_eq!(i.round_ties_even(), 4.0);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[unstable(feature = "round_ties_even", issue = "96710")]
    #[inline]
    pub fn round_ties_even(self) -> f32 {
        unsafe { intrinsics::rintf32(self) }
    }

    /// 返回 `self` 的整数部分。
    /// 这意味着非整数总是被截断为零。
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 3.7_f32;
    /// let g = 3.0_f32;
    /// let h = -3.7_f32;
    ///
    /// assert_eq!(f.trunc(), 3.0);
    /// assert_eq!(g.trunc(), 3.0);
    /// assert_eq!(h.trunc(), -3.0);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn trunc(self) -> f32 {
        unsafe { intrinsics::truncf32(self) }
    }

    /// 返回 `self` 的小数部分。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 3.6_f32;
    /// let y = -3.6_f32;
    /// let abs_difference_x = (x.fract() - 0.6).abs();
    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
    ///
    /// assert!(abs_difference_x <= f32::EPSILON);
    /// assert!(abs_difference_y <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn fract(self) -> f32 {
        self - self.trunc()
    }

    /// 计算 `self` 的绝对值。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 3.5_f32;
    /// let y = -3.5_f32;
    ///
    /// let abs_difference_x = (x.abs() - x).abs();
    /// let abs_difference_y = (y.abs() - (-y)).abs();
    ///
    /// assert!(abs_difference_x <= f32::EPSILON);
    /// assert!(abs_difference_y <= f32::EPSILON);
    ///
    /// assert!(f32::NAN.abs().is_nan());
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn abs(self) -> f32 {
        unsafe { intrinsics::fabsf32(self) }
    }

    /// 返回一个表示 `self` 符号的数字。
    ///
    /// - `1.0` 如果数字是正数,`+0.0` 或 `INFINITY`
    /// - `-1.0` 如果数字是负数,`-0.0` 或 `NEG_INFINITY`
    /// - 如果数字为 NaN,则为 NaN
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 3.5_f32;
    ///
    /// assert_eq!(f.signum(), 1.0);
    /// assert_eq!(f32::NEG_INFINITY.signum(), -1.0);
    ///
    /// assert!(f32::NAN.signum().is_nan());
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn signum(self) -> f32 {
        if self.is_nan() { Self::NAN } else { 1.0_f32.copysign(self) }
    }

    /// 返回一个数字,该数字由 `self` 的大小和 `sign` 的符号组成。
    ///
    /// 如果 `self` 和 `sign` 的符号相同,则等于 `self`,否则等于 `-self`。
    /// 如果 `self` 是 NaN,则返回符号位为 `sign` 的 NaN。
    /// 但是请注意,通常不能保证在算术运算中保留 NaN 上的符号位。
    ///
    /// 有关详细信息,请参见 [将 NaN 解释为特殊值](primitive@f32)。
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 3.5_f32;
    ///
    /// assert_eq!(f.copysign(0.42), 3.5_f32);
    /// assert_eq!(f.copysign(-0.42), -3.5_f32);
    /// assert_eq!((-f).copysign(0.42), 3.5_f32);
    /// assert_eq!((-f).copysign(-0.42), -3.5_f32);
    ///
    /// assert!(f32::NAN.copysign(1.0).is_nan());
    /// ```
    ///
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline]
    #[stable(feature = "copysign", since = "1.35.0")]
    pub fn copysign(self, sign: f32) -> f32 {
        unsafe { intrinsics::copysignf32(self, sign) }
    }

    /// 融合乘法加法。
    /// 仅用一个舍入误差计算 `(self * a) + b`,比未融合的乘法加法产生更准确的结果。
    ///
    /// 如果目标体系结构具有专用的 `fma` CPU 指令,则使用 `mul_add` 的性能可能比未融合的乘加性能更高。
    ///
    /// 但是,这并不总是正确的,并且在很大程度上取决于设计算法时要考虑特定的目标硬件。
    ///
    /// # Examples
    ///
    /// ```
    /// let m = 10.0_f32;
    /// let x = 4.0_f32;
    /// let b = 60.0_f32;
    ///
    /// // 100.0
    /// let abs_difference = (m.mul_add(x, b) - ((m * x) + b)).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    ///
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn mul_add(self, a: f32, b: f32) -> f32 {
        unsafe { intrinsics::fmaf32(self, a, b) }
    }

    /// 计算欧几里得除法,即 `rem_euclid` 的匹配方法。
    ///
    /// 这将计算整数 `n`,如 `self = n * rhs + self.rem_euclid(rhs)`。
    /// 换句话说,结果是将 `self / rhs` 舍入为 `n` 的整数 `n`。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let a: f32 = 7.0;
    /// let b = 4.0;
    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
    /// ```
    ///
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline]
    #[stable(feature = "euclidean_division", since = "1.38.0")]
    pub fn div_euclid(self, rhs: f32) -> f32 {
        let q = (self / rhs).trunc();
        if self % rhs < 0.0 {
            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
        }
        q
    }

    /// 计算 `self (mod rhs)` 的最小非负余数。
    ///
    /// 特别地,在大多数情况下,返回值 `r` 满足 `0.0 <= r < rhs.abs()`。
    /// 但是,由于浮点舍入误差,如果 `self` 的幅值和 `self < 0.0` 远小于 `rhs.abs()`,则可能会导致 `r == rhs.abs()` 违反数学定义。
    /// 此结果不是函数的余域的元素,但它是实数中最接近的浮点数,因此近似满足属性 `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let a: f32 = 7.0;
    /// let b = 4.0;
    /// assert_eq!(a.rem_euclid(b), 3.0);
    /// assert_eq!((-a).rem_euclid(b), 1.0);
    /// assert_eq!(a.rem_euclid(-b), 3.0);
    /// assert_eq!((-a).rem_euclid(-b), 1.0);
    /// // 由于舍入误差而造成的限制
    /// assert!((-f32::EPSILON).rem_euclid(3.0) != 0.0);
    /// ```
    ///
    ///
    ///
    ///
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[inline]
    #[stable(feature = "euclidean_division", since = "1.38.0")]
    pub fn rem_euclid(self, rhs: f32) -> f32 {
        let r = self % rhs;
        if r < 0.0 { r + rhs.abs() } else { r }
    }

    /// 将数字提高到整数幂。
    ///
    /// 使用这个函数通常比使用 `powf` 更快。
    /// 它可能具有与 `powf` 不同的舍入操作序列,因此不能保证结果一致。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 2.0_f32;
    /// let abs_difference = (x.powi(2) - (x * x)).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn powi(self, n: i32) -> f32 {
        unsafe { intrinsics::powif32(self, n) }
    }

    /// 将数字加到浮点幂。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 2.0_f32;
    /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn powf(self, n: f32) -> f32 {
        unsafe { intrinsics::powf32(self, n) }
    }

    /// 返回数字的平方根。
    ///
    /// 如果 `self` 是 `-0.0` 以外的负数,则返回 NaN。
    ///
    /// # Examples
    ///
    /// ```
    /// let positive = 4.0_f32;
    /// let negative = -4.0_f32;
    /// let negative_zero = -0.0_f32;
    ///
    /// let abs_difference = (positive.sqrt() - 2.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// assert!(negative.sqrt().is_nan());
    /// assert!(negative_zero.sqrt() == negative_zero);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn sqrt(self) -> f32 {
        unsafe { intrinsics::sqrtf32(self) }
    }

    /// 返回 `e^(self)` (指数函数)。
    ///
    /// # Examples
    ///
    /// ```
    /// let one = 1.0f32;
    /// // e^1
    /// let e = one.exp();
    ///
    /// // ln(e) - 1 == 0
    /// let abs_difference = (e.ln() - 1.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn exp(self) -> f32 {
        unsafe { intrinsics::expf32(self) }
    }

    /// 返回 `2^(self)`。
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 2.0f32;
    ///
    /// // 2^2 - 4 == 0
    /// let abs_difference = (f.exp2() - 4.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn exp2(self) -> f32 {
        unsafe { intrinsics::exp2f32(self) }
    }

    /// 返回数字的自然对数。
    ///
    /// # Examples
    ///
    /// ```
    /// let one = 1.0f32;
    /// // e^1
    /// let e = one.exp();
    ///
    /// // ln(e) - 1 == 0
    /// let abs_difference = (e.ln() - 1.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn ln(self) -> f32 {
        unsafe { intrinsics::logf32(self) }
    }

    /// 返回数字相对于任意基数的对数。
    ///
    /// 由于实现细节,结果可能无法正确四舍五入;
    /// `self.log2()` 可以为基数 2 生成更准确的结果,而 `self.log10()` 可以为基数 10 生成更准确的结果。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let five = 5.0f32;
    ///
    /// // log5(5) - 1 == 0
    /// let abs_difference = (five.log(5.0) - 1.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn log(self, base: f32) -> f32 {
        self.ln() / base.ln()
    }

    /// 返回数字的以 2 为底的对数。
    ///
    /// # Examples
    ///
    /// ```
    /// let two = 2.0f32;
    ///
    /// // log2(2) - 1 == 0
    /// let abs_difference = (two.log2() - 1.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn log2(self) -> f32 {
        #[cfg(target_os = "android")]
        return crate::sys::android::log2f32(self);
        #[cfg(not(target_os = "android"))]
        return unsafe { intrinsics::log2f32(self) };
    }

    /// 返回数字的以 10 为底的对数。
    ///
    /// # Examples
    ///
    /// ```
    /// let ten = 10.0f32;
    ///
    /// // log10(10) - 1 == 0
    /// let abs_difference = (ten.log10() - 1.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn log10(self) -> f32 {
        unsafe { intrinsics::log10f32(self) }
    }

    /// 两个数字的正差。
    ///
    /// * 如果 `self <= other`: `0:0`
    /// * 否则: `self - other`
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 3.0f32;
    /// let y = -3.0f32;
    ///
    /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
    /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
    ///
    /// assert!(abs_difference_x <= f32::EPSILON);
    /// assert!(abs_difference_y <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    #[deprecated(
        since = "1.10.0",
        note = "you probably meant `(self - other).abs()`: \
                this operation is `(self - other).max(0.0)` \
                except that `abs_sub` also propagates NaNs (also \
                known as `fdimf` in C). If you truly need the positive \
                difference, consider using that expression or the C function \
                `fdimf`, depending on how you wish to handle NaN (please consider \
                filing an issue describing your use-case too)."
    )]
    pub fn abs_sub(self, other: f32) -> f32 {
        unsafe { cmath::fdimf(self, other) }
    }

    /// 返回数字的立方根。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 8.0f32;
    ///
    /// // x^(1/3) - 2 == 0
    /// let abs_difference = (x.cbrt() - 2.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn cbrt(self) -> f32 {
        unsafe { cmath::cbrtf(self) }
    }

    /// 计算原点与欧几里德平面上的点 (`x`, `y`) 之间的距离。
    /// 等价地,计算直角三角形的斜边长度,其他边的长度分别为 `x.abs()` 和 `y.abs()`。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 2.0f32;
    /// let y = 3.0f32;
    ///
    /// // sqrt(x^2 + y^2)
    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    ///
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn hypot(self, other: f32) -> f32 {
        unsafe { cmath::hypotf(self, other) }
    }

    /// 计算数字的正弦 (以弧度为单位)。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = std::f32::consts::FRAC_PI_2;
    ///
    /// let abs_difference = (x.sin() - 1.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn sin(self) -> f32 {
        unsafe { intrinsics::sinf32(self) }
    }

    /// 计算数字的余弦 (以弧度为单位)。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 2.0 * std::f32::consts::PI;
    ///
    /// let abs_difference = (x.cos() - 1.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn cos(self) -> f32 {
        unsafe { intrinsics::cosf32(self) }
    }

    /// 计算一个数的正切 (以弧度为单位)。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = std::f32::consts::FRAC_PI_4;
    /// let abs_difference = (x.tan() - 1.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn tan(self) -> f32 {
        unsafe { cmath::tanf(self) }
    }

    /// 计算数字的反正弦。
    /// 如果数字超出 [-1, 1] 范围,则返回值的弧度范围为 [-pi/2, pi/2] 或 NaN。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let f = std::f32::consts::FRAC_PI_2;
    ///
    /// // asin(sin(pi/2))
    /// let abs_difference = (f.sin().asin() - std::f32::consts::FRAC_PI_2).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn asin(self) -> f32 {
        unsafe { cmath::asinf(self) }
    }

    /// 计算数字的反余弦值。
    /// 如果数字超出 [-1, 1] 范围,则返回值的弧度范围为 [0, pi] 或 NaN。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let f = std::f32::consts::FRAC_PI_4;
    ///
    /// // acos(cos(pi/4))
    /// let abs_difference = (f.cos().acos() - std::f32::consts::FRAC_PI_4).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn acos(self) -> f32 {
        unsafe { cmath::acosf(self) }
    }

    /// 计算数字的反正切。
    /// 返回值以弧度为单位,范围为 [-pi/2, pi/2];
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 1.0f32;
    ///
    /// // atan(tan(1))
    /// let abs_difference = (f.tan().atan() - 1.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn atan(self) -> f32 {
        unsafe { cmath::atanf(self) }
    }

    /// 计算弧度 `self` (`y`) 和 `other` (`x`) 的四个象限反正切。
    ///
    /// * `x = 0`, `y = 0`: `0`
    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
    ///
    /// # Examples
    ///
    /// ```
    /// // 从正 x 轴逆时针测量的正角度 -pi/4 弧度 (顺时针 45 度)
    /////
    /////
    /// let x1 = 3.0f32;
    /// let y1 = -3.0f32;
    ///
    /// // 3pi/4 弧度 (逆时针 135 度)
    /// let x2 = -3.0f32;
    /// let y2 = 3.0f32;
    ///
    /// let abs_difference_1 = (y1.atan2(x1) - (-std::f32::consts::FRAC_PI_4)).abs();
    /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f32::consts::FRAC_PI_4)).abs();
    ///
    /// assert!(abs_difference_1 <= f32::EPSILON);
    /// assert!(abs_difference_2 <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn atan2(self, other: f32) -> f32 {
        unsafe { cmath::atan2f(self, other) }
    }

    /// 同时计算数字 `x` 的正弦和余弦。
    /// 返回 `(sin(x), cos(x))`。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = std::f32::consts::FRAC_PI_4;
    /// let f = x.sin_cos();
    ///
    /// let abs_difference_0 = (f.0 - x.sin()).abs();
    /// let abs_difference_1 = (f.1 - x.cos()).abs();
    ///
    /// assert!(abs_difference_0 <= f32::EPSILON);
    /// assert!(abs_difference_1 <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn sin_cos(self) -> (f32, f32) {
        (self.sin(), self.cos())
    }

    /// 即使数字接近零,也以准确的方式返回 `e^(self) - 1`。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 1e-8_f32;
    ///
    /// // 对于非常小的 x,e^x 约为 1 + x + x^2 / 2
    /// let approx = x + x * x / 2.0;
    /// let abs_difference = (x.exp_m1() - approx).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn exp_m1(self) -> f32 {
        unsafe { cmath::expm1f(self) }
    }

    /// 与单独执行操作相比,返回 `ln(1+n)` (自然对数) 的准确性更高。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 1e-8_f32;
    ///
    /// // 对于非常小的 x,ln(1 + x) 大约为 x - x^2 / 2
    /// let approx = x - x * x / 2.0;
    /// let abs_difference = (x.ln_1p() - approx).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn ln_1p(self) -> f32 {
        unsafe { cmath::log1pf(self) }
    }

    /// 双曲正弦函数。
    ///
    /// # Examples
    ///
    /// ```
    /// let e = std::f32::consts::E;
    /// let x = 1.0f32;
    ///
    /// let f = x.sinh();
    /// // 将 sinh() 求解为 1 得到 `(e^2-1)/(2e)`
    /// let g = ((e * e) - 1.0) / (2.0 * e);
    /// let abs_difference = (f - g).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn sinh(self) -> f32 {
        unsafe { cmath::sinhf(self) }
    }

    /// 双曲余弦函数。
    ///
    /// # Examples
    ///
    /// ```
    /// let e = std::f32::consts::E;
    /// let x = 1.0f32;
    /// let f = x.cosh();
    /// // 将 cosh() 求解为 1 可得出此结果
    /// let g = ((e * e) + 1.0) / (2.0 * e);
    /// let abs_difference = (f - g).abs();
    ///
    /// // 同样的结果
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn cosh(self) -> f32 {
        unsafe { cmath::coshf(self) }
    }

    /// 双曲正切函数。
    ///
    /// # Examples
    ///
    /// ```
    /// let e = std::f32::consts::E;
    /// let x = 1.0f32;
    ///
    /// let f = x.tanh();
    /// // 将 tanh() 求解为 1 得到 `(1 - e^(-2))/(1 + e^(-2))`
    /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
    /// let abs_difference = (f - g).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn tanh(self) -> f32 {
        unsafe { cmath::tanhf(self) }
    }

    /// 反双曲正弦函数。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 1.0f32;
    /// let f = x.sinh().asinh();
    ///
    /// let abs_difference = (f - x).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn asinh(self) -> f32 {
        let ax = self.abs();
        let ix = 1.0 / ax;
        (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
    }

    /// 反双曲余弦函数。
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 1.0f32;
    /// let f = x.cosh().acosh();
    ///
    /// let abs_difference = (f - x).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn acosh(self) -> f32 {
        if self < 1.0 {
            Self::NAN
        } else {
            (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
        }
    }

    /// 反双曲正切函数。
    ///
    /// # Examples
    ///
    /// ```
    /// let e = std::f32::consts::E;
    /// let f = e.tanh().atanh();
    ///
    /// let abs_difference = (f - e).abs();
    ///
    /// assert!(abs_difference <= 1e-5);
    /// ```
    #[rustc_allow_incoherent_impl]
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn atanh(self) -> f32 {
        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
    }
}