1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
//! `f32` 单精度浮点类型的常量。
//!
//! *[See also the `f32` primitive type](primitive@f32).*
//!
//! `consts` 子模块中提供了数学上有效的数字。
//!
//! 对于直接在此模块中定义的常量 (不同于 `consts` 子模块中定义的常量),新代码应改为使用直接在 `f32` 类型上定义的关联常量。
//!
//!
//!
#![stable(feature = "rust1", since = "1.0.0")]
#![allow(missing_docs)]
#[cfg(test)]
mod tests;
#[cfg(not(test))]
use crate::intrinsics;
#[cfg(not(test))]
use crate::sys::cmath;
#[stable(feature = "rust1", since = "1.0.0")]
#[allow(deprecated, deprecated_in_future)]
pub use core::f32::{
consts, DIGITS, EPSILON, INFINITY, MANTISSA_DIGITS, MAX, MAX_10_EXP, MAX_EXP, MIN, MIN_10_EXP,
MIN_EXP, MIN_POSITIVE, NAN, NEG_INFINITY, RADIX,
};
#[cfg(not(test))]
impl f32 {
/// 返回小于或等于 `self` 的最大整数。
///
/// # Examples
///
/// ```
/// let f = 3.7_f32;
/// let g = 3.0_f32;
/// let h = -3.7_f32;
///
/// assert_eq!(f.floor(), 3.0);
/// assert_eq!(g.floor(), 3.0);
/// assert_eq!(h.floor(), -4.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn floor(self) -> f32 {
unsafe { intrinsics::floorf32(self) }
}
/// 返回大于或等于 `self` 的最小整数。
///
/// # Examples
///
/// ```
/// let f = 3.01_f32;
/// let g = 4.0_f32;
///
/// assert_eq!(f.ceil(), 4.0);
/// assert_eq!(g.ceil(), 4.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn ceil(self) -> f32 {
unsafe { intrinsics::ceilf32(self) }
}
/// 返回最接近 `self` 的整数。
/// 如果值介于两个整数之间,则舍入 `0.0`。
///
/// # Examples
///
/// ```
/// let f = 3.3_f32;
/// let g = -3.3_f32;
/// let h = -3.7_f32;
/// let i = 3.5_f32;
/// let j = 4.5_f32;
///
/// assert_eq!(f.round(), 3.0);
/// assert_eq!(g.round(), -3.0);
/// assert_eq!(h.round(), -4.0);
/// assert_eq!(i.round(), 4.0);
/// assert_eq!(j.round(), 5.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn round(self) -> f32 {
unsafe { intrinsics::roundf32(self) }
}
/// 返回最接近整数的数字。
/// 将中途个案四舍五入到具有最低有效数字的数字。
///
/// # Examples
///
/// ```
/// #![feature(round_ties_even)]
///
/// let f = 3.3_f32;
/// let g = -3.3_f32;
/// let h = 3.5_f32;
/// let i = 4.5_f32;
///
/// assert_eq!(f.round_ties_even(), 3.0);
/// assert_eq!(g.round_ties_even(), -3.0);
/// assert_eq!(h.round_ties_even(), 4.0);
/// assert_eq!(i.round_ties_even(), 4.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[unstable(feature = "round_ties_even", issue = "96710")]
#[inline]
pub fn round_ties_even(self) -> f32 {
unsafe { intrinsics::rintf32(self) }
}
/// 返回 `self` 的整数部分。
/// 这意味着非整数总是被截断为零。
///
/// # Examples
///
/// ```
/// let f = 3.7_f32;
/// let g = 3.0_f32;
/// let h = -3.7_f32;
///
/// assert_eq!(f.trunc(), 3.0);
/// assert_eq!(g.trunc(), 3.0);
/// assert_eq!(h.trunc(), -3.0);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn trunc(self) -> f32 {
unsafe { intrinsics::truncf32(self) }
}
/// 返回 `self` 的小数部分。
///
/// # Examples
///
/// ```
/// let x = 3.6_f32;
/// let y = -3.6_f32;
/// let abs_difference_x = (x.fract() - 0.6).abs();
/// let abs_difference_y = (y.fract() - (-0.6)).abs();
///
/// assert!(abs_difference_x <= f32::EPSILON);
/// assert!(abs_difference_y <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn fract(self) -> f32 {
self - self.trunc()
}
/// 计算 `self` 的绝对值。
///
/// # Examples
///
/// ```
/// let x = 3.5_f32;
/// let y = -3.5_f32;
///
/// let abs_difference_x = (x.abs() - x).abs();
/// let abs_difference_y = (y.abs() - (-y)).abs();
///
/// assert!(abs_difference_x <= f32::EPSILON);
/// assert!(abs_difference_y <= f32::EPSILON);
///
/// assert!(f32::NAN.abs().is_nan());
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn abs(self) -> f32 {
unsafe { intrinsics::fabsf32(self) }
}
/// 返回一个表示 `self` 符号的数字。
///
/// - `1.0` 如果数字是正数,`+0.0` 或 `INFINITY`
/// - `-1.0` 如果数字是负数,`-0.0` 或 `NEG_INFINITY`
/// - 如果数字为 NaN,则为 NaN
///
/// # Examples
///
/// ```
/// let f = 3.5_f32;
///
/// assert_eq!(f.signum(), 1.0);
/// assert_eq!(f32::NEG_INFINITY.signum(), -1.0);
///
/// assert!(f32::NAN.signum().is_nan());
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn signum(self) -> f32 {
if self.is_nan() { Self::NAN } else { 1.0_f32.copysign(self) }
}
/// 返回一个数字,该数字由 `self` 的大小和 `sign` 的符号组成。
///
/// 如果 `self` 和 `sign` 的符号相同,则等于 `self`,否则等于 `-self`。
/// 如果 `self` 是 NaN,则返回符号位为 `sign` 的 NaN。
/// 但是请注意,通常不能保证在算术运算中保留 NaN 上的符号位。
///
/// 有关详细信息,请参见 [将 NaN 解释为特殊值](primitive@f32)。
///
/// # Examples
///
/// ```
/// let f = 3.5_f32;
///
/// assert_eq!(f.copysign(0.42), 3.5_f32);
/// assert_eq!(f.copysign(-0.42), -3.5_f32);
/// assert_eq!((-f).copysign(0.42), 3.5_f32);
/// assert_eq!((-f).copysign(-0.42), -3.5_f32);
///
/// assert!(f32::NAN.copysign(1.0).is_nan());
/// ```
///
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[inline]
#[stable(feature = "copysign", since = "1.35.0")]
pub fn copysign(self, sign: f32) -> f32 {
unsafe { intrinsics::copysignf32(self, sign) }
}
/// 融合乘法加法。
/// 仅用一个舍入误差计算 `(self * a) + b`,比未融合的乘法加法产生更准确的结果。
///
/// 如果目标体系结构具有专用的 `fma` CPU 指令,则使用 `mul_add` 的性能可能比未融合的乘加性能更高。
///
/// 但是,这并不总是正确的,并且在很大程度上取决于设计算法时要考虑特定的目标硬件。
///
/// # Examples
///
/// ```
/// let m = 10.0_f32;
/// let x = 4.0_f32;
/// let b = 60.0_f32;
///
/// // 100.0
/// let abs_difference = (m.mul_add(x, b) - ((m * x) + b)).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
///
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn mul_add(self, a: f32, b: f32) -> f32 {
unsafe { intrinsics::fmaf32(self, a, b) }
}
/// 计算欧几里得除法,即 `rem_euclid` 的匹配方法。
///
/// 这将计算整数 `n`,如 `self = n * rhs + self.rem_euclid(rhs)`。
/// 换句话说,结果是将 `self / rhs` 舍入为 `n` 的整数 `n`。
///
///
/// # Examples
///
/// ```
/// let a: f32 = 7.0;
/// let b = 4.0;
/// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
/// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
/// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
/// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
/// ```
///
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[inline]
#[stable(feature = "euclidean_division", since = "1.38.0")]
pub fn div_euclid(self, rhs: f32) -> f32 {
let q = (self / rhs).trunc();
if self % rhs < 0.0 {
return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
}
q
}
/// 计算 `self (mod rhs)` 的最小非负余数。
///
/// 特别地,在大多数情况下,返回值 `r` 满足 `0.0 <= r < rhs.abs()`。
/// 但是,由于浮点舍入误差,如果 `self` 的幅值和 `self < 0.0` 远小于 `rhs.abs()`,则可能会导致 `r == rhs.abs()` 违反数学定义。
/// 此结果不是函数的余域的元素,但它是实数中最接近的浮点数,因此近似满足属性 `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`。
///
///
/// # Examples
///
/// ```
/// let a: f32 = 7.0;
/// let b = 4.0;
/// assert_eq!(a.rem_euclid(b), 3.0);
/// assert_eq!((-a).rem_euclid(b), 1.0);
/// assert_eq!(a.rem_euclid(-b), 3.0);
/// assert_eq!((-a).rem_euclid(-b), 1.0);
/// // 由于舍入误差而造成的限制
/// assert!((-f32::EPSILON).rem_euclid(3.0) != 0.0);
/// ```
///
///
///
///
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[inline]
#[stable(feature = "euclidean_division", since = "1.38.0")]
pub fn rem_euclid(self, rhs: f32) -> f32 {
let r = self % rhs;
if r < 0.0 { r + rhs.abs() } else { r }
}
/// 将数字提高到整数幂。
///
/// 使用这个函数通常比使用 `powf` 更快。
/// 它可能具有与 `powf` 不同的舍入操作序列,因此不能保证结果一致。
///
///
/// # Examples
///
/// ```
/// let x = 2.0_f32;
/// let abs_difference = (x.powi(2) - (x * x)).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn powi(self, n: i32) -> f32 {
unsafe { intrinsics::powif32(self, n) }
}
/// 将数字加到浮点幂。
///
/// # Examples
///
/// ```
/// let x = 2.0_f32;
/// let abs_difference = (x.powf(2.0) - (x * x)).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn powf(self, n: f32) -> f32 {
unsafe { intrinsics::powf32(self, n) }
}
/// 返回数字的平方根。
///
/// 如果 `self` 是 `-0.0` 以外的负数,则返回 NaN。
///
/// # Examples
///
/// ```
/// let positive = 4.0_f32;
/// let negative = -4.0_f32;
/// let negative_zero = -0.0_f32;
///
/// let abs_difference = (positive.sqrt() - 2.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// assert!(negative.sqrt().is_nan());
/// assert!(negative_zero.sqrt() == negative_zero);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sqrt(self) -> f32 {
unsafe { intrinsics::sqrtf32(self) }
}
/// 返回 `e^(self)` (指数函数)。
///
/// # Examples
///
/// ```
/// let one = 1.0f32;
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn exp(self) -> f32 {
unsafe { intrinsics::expf32(self) }
}
/// 返回 `2^(self)`。
///
/// # Examples
///
/// ```
/// let f = 2.0f32;
///
/// // 2^2 - 4 == 0
/// let abs_difference = (f.exp2() - 4.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn exp2(self) -> f32 {
unsafe { intrinsics::exp2f32(self) }
}
/// 返回数字的自然对数。
///
/// # Examples
///
/// ```
/// let one = 1.0f32;
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn ln(self) -> f32 {
unsafe { intrinsics::logf32(self) }
}
/// 返回数字相对于任意基数的对数。
///
/// 由于实现细节,结果可能无法正确四舍五入;
/// `self.log2()` 可以为基数 2 生成更准确的结果,而 `self.log10()` 可以为基数 10 生成更准确的结果。
///
///
/// # Examples
///
/// ```
/// let five = 5.0f32;
///
/// // log5(5) - 1 == 0
/// let abs_difference = (five.log(5.0) - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn log(self, base: f32) -> f32 {
self.ln() / base.ln()
}
/// 返回数字的以 2 为底的对数。
///
/// # Examples
///
/// ```
/// let two = 2.0f32;
///
/// // log2(2) - 1 == 0
/// let abs_difference = (two.log2() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn log2(self) -> f32 {
#[cfg(target_os = "android")]
return crate::sys::android::log2f32(self);
#[cfg(not(target_os = "android"))]
return unsafe { intrinsics::log2f32(self) };
}
/// 返回数字的以 10 为底的对数。
///
/// # Examples
///
/// ```
/// let ten = 10.0f32;
///
/// // log10(10) - 1 == 0
/// let abs_difference = (ten.log10() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn log10(self) -> f32 {
unsafe { intrinsics::log10f32(self) }
}
/// 两个数字的正差。
///
/// * 如果 `self <= other`: `0:0`
/// * 否则: `self - other`
///
/// # Examples
///
/// ```
/// let x = 3.0f32;
/// let y = -3.0f32;
///
/// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
/// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
///
/// assert!(abs_difference_x <= f32::EPSILON);
/// assert!(abs_difference_y <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
#[deprecated(
since = "1.10.0",
note = "you probably meant `(self - other).abs()`: \
this operation is `(self - other).max(0.0)` \
except that `abs_sub` also propagates NaNs (also \
known as `fdimf` in C). If you truly need the positive \
difference, consider using that expression or the C function \
`fdimf`, depending on how you wish to handle NaN (please consider \
filing an issue describing your use-case too)."
)]
pub fn abs_sub(self, other: f32) -> f32 {
unsafe { cmath::fdimf(self, other) }
}
/// 返回数字的立方根。
///
/// # Examples
///
/// ```
/// let x = 8.0f32;
///
/// // x^(1/3) - 2 == 0
/// let abs_difference = (x.cbrt() - 2.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn cbrt(self) -> f32 {
unsafe { cmath::cbrtf(self) }
}
/// 计算原点与欧几里德平面上的点 (`x`, `y`) 之间的距离。
/// 等价地,计算直角三角形的斜边长度,其他边的长度分别为 `x.abs()` 和 `y.abs()`。
///
///
/// # Examples
///
/// ```
/// let x = 2.0f32;
/// let y = 3.0f32;
///
/// // sqrt(x^2 + y^2)
/// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
///
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn hypot(self, other: f32) -> f32 {
unsafe { cmath::hypotf(self, other) }
}
/// 计算数字的正弦 (以弧度为单位)。
///
/// # Examples
///
/// ```
/// let x = std::f32::consts::FRAC_PI_2;
///
/// let abs_difference = (x.sin() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sin(self) -> f32 {
unsafe { intrinsics::sinf32(self) }
}
/// 计算数字的余弦 (以弧度为单位)。
///
/// # Examples
///
/// ```
/// let x = 2.0 * std::f32::consts::PI;
///
/// let abs_difference = (x.cos() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn cos(self) -> f32 {
unsafe { intrinsics::cosf32(self) }
}
/// 计算一个数的正切 (以弧度为单位)。
///
/// # Examples
///
/// ```
/// let x = std::f32::consts::FRAC_PI_4;
/// let abs_difference = (x.tan() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn tan(self) -> f32 {
unsafe { cmath::tanf(self) }
}
/// 计算数字的反正弦。
/// 如果数字超出 [-1, 1] 范围,则返回值的弧度范围为 [-pi/2, pi/2] 或 NaN。
///
///
/// # Examples
///
/// ```
/// let f = std::f32::consts::FRAC_PI_2;
///
/// // asin(sin(pi/2))
/// let abs_difference = (f.sin().asin() - std::f32::consts::FRAC_PI_2).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn asin(self) -> f32 {
unsafe { cmath::asinf(self) }
}
/// 计算数字的反余弦值。
/// 如果数字超出 [-1, 1] 范围,则返回值的弧度范围为 [0, pi] 或 NaN。
///
///
/// # Examples
///
/// ```
/// let f = std::f32::consts::FRAC_PI_4;
///
/// // acos(cos(pi/4))
/// let abs_difference = (f.cos().acos() - std::f32::consts::FRAC_PI_4).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn acos(self) -> f32 {
unsafe { cmath::acosf(self) }
}
/// 计算数字的反正切。
/// 返回值以弧度为单位,范围为 [-pi/2, pi/2];
///
/// # Examples
///
/// ```
/// let f = 1.0f32;
///
/// // atan(tan(1))
/// let abs_difference = (f.tan().atan() - 1.0).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn atan(self) -> f32 {
unsafe { cmath::atanf(self) }
}
/// 计算弧度 `self` (`y`) 和 `other` (`x`) 的四个象限反正切。
///
/// * `x = 0`, `y = 0`: `0`
/// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
/// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
/// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
///
/// # Examples
///
/// ```
/// // 从正 x 轴逆时针测量的正角度 -pi/4 弧度 (顺时针 45 度)
/////
/////
/// let x1 = 3.0f32;
/// let y1 = -3.0f32;
///
/// // 3pi/4 弧度 (逆时针 135 度)
/// let x2 = -3.0f32;
/// let y2 = 3.0f32;
///
/// let abs_difference_1 = (y1.atan2(x1) - (-std::f32::consts::FRAC_PI_4)).abs();
/// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f32::consts::FRAC_PI_4)).abs();
///
/// assert!(abs_difference_1 <= f32::EPSILON);
/// assert!(abs_difference_2 <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn atan2(self, other: f32) -> f32 {
unsafe { cmath::atan2f(self, other) }
}
/// 同时计算数字 `x` 的正弦和余弦。
/// 返回 `(sin(x), cos(x))`。
///
/// # Examples
///
/// ```
/// let x = std::f32::consts::FRAC_PI_4;
/// let f = x.sin_cos();
///
/// let abs_difference_0 = (f.0 - x.sin()).abs();
/// let abs_difference_1 = (f.1 - x.cos()).abs();
///
/// assert!(abs_difference_0 <= f32::EPSILON);
/// assert!(abs_difference_1 <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sin_cos(self) -> (f32, f32) {
(self.sin(), self.cos())
}
/// 即使数字接近零,也以准确的方式返回 `e^(self) - 1`。
///
///
/// # Examples
///
/// ```
/// let x = 1e-8_f32;
///
/// // 对于非常小的 x,e^x 约为 1 + x + x^2 / 2
/// let approx = x + x * x / 2.0;
/// let abs_difference = (x.exp_m1() - approx).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn exp_m1(self) -> f32 {
unsafe { cmath::expm1f(self) }
}
/// 与单独执行操作相比,返回 `ln(1+n)` (自然对数) 的准确性更高。
///
///
/// # Examples
///
/// ```
/// let x = 1e-8_f32;
///
/// // 对于非常小的 x,ln(1 + x) 大约为 x - x^2 / 2
/// let approx = x - x * x / 2.0;
/// let abs_difference = (x.ln_1p() - approx).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn ln_1p(self) -> f32 {
unsafe { cmath::log1pf(self) }
}
/// 双曲正弦函数。
///
/// # Examples
///
/// ```
/// let e = std::f32::consts::E;
/// let x = 1.0f32;
///
/// let f = x.sinh();
/// // 将 sinh() 求解为 1 得到 `(e^2-1)/(2e)`
/// let g = ((e * e) - 1.0) / (2.0 * e);
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sinh(self) -> f32 {
unsafe { cmath::sinhf(self) }
}
/// 双曲余弦函数。
///
/// # Examples
///
/// ```
/// let e = std::f32::consts::E;
/// let x = 1.0f32;
/// let f = x.cosh();
/// // 将 cosh() 求解为 1 可得出此结果
/// let g = ((e * e) + 1.0) / (2.0 * e);
/// let abs_difference = (f - g).abs();
///
/// // 同样的结果
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn cosh(self) -> f32 {
unsafe { cmath::coshf(self) }
}
/// 双曲正切函数。
///
/// # Examples
///
/// ```
/// let e = std::f32::consts::E;
/// let x = 1.0f32;
///
/// let f = x.tanh();
/// // 将 tanh() 求解为 1 得到 `(1 - e^(-2))/(1 + e^(-2))`
/// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn tanh(self) -> f32 {
unsafe { cmath::tanhf(self) }
}
/// 反双曲正弦函数。
///
/// # Examples
///
/// ```
/// let x = 1.0f32;
/// let f = x.sinh().asinh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn asinh(self) -> f32 {
let ax = self.abs();
let ix = 1.0 / ax;
(ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
}
/// 反双曲余弦函数。
///
/// # Examples
///
/// ```
/// let x = 1.0f32;
/// let f = x.cosh().acosh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference <= f32::EPSILON);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn acosh(self) -> f32 {
if self < 1.0 {
Self::NAN
} else {
(self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
}
}
/// 反双曲正切函数。
///
/// # Examples
///
/// ```
/// let e = std::f32::consts::E;
/// let f = e.tanh().atanh();
///
/// let abs_difference = (f - e).abs();
///
/// assert!(abs_difference <= 1e-5);
/// ```
#[rustc_allow_incoherent_impl]
#[must_use = "method returns a new number and does not mutate the original value"]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn atanh(self) -> f32 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}
}