1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
#[cfg(test)]
mod tests;
use crate::io::prelude::*;
use crate::alloc::Allocator;
use crate::cmp;
use crate::io::{self, BorrowedCursor, ErrorKind, IoSlice, IoSliceMut, SeekFrom};
/// `Cursor` 包装内存中的缓冲区,并为其提供 [`Seek`] 实现。
///
/// `Cursor`s 与内存缓冲区一起使用,任何实现 <code>[AsRef]<\[u8]></code>,以允许它们实现 [`Read`] 或者 [`Write`],从而允许这些缓冲区在您可能使用进行实际 I/O 的读取器或写入器的任何地方使用。
///
///
/// 标准库在通常用作缓冲区的各种类型上实现了一些 I/O traits,例如 <code>Cursor<[Vec]\<u8>></code> and <code>Cursor<[&\[u8\]][bytes]></code>。
///
/// # Examples
///
/// 我们可能想在生产代码中将字节写入 [`File`],但在测试中使用内存缓冲区。我们可以做到这一点
/// `Cursor`:
///
/// [bytes]: crate::slice "slice"
/// [`File`]: crate::fs::File
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // 我们编写的库函数
/// fn write_ten_bytes_at_end<W: Write + Seek>(mut writer: W) -> io::Result<()> {
/// writer.seek(SeekFrom::End(-10))?;
///
/// for i in 0..10 {
/// writer.write(&[i])?;
/// }
///
/// // 一切顺利
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // 这是一些使用此库函数的代码。
/////
/// // 我们可能想在此处使用 BufReader 来提高效率,但让我们继续关注此示例。
/////
/// let mut file = File::create("foo.txt")?;
///
/// write_ten_bytes_at_end(&mut file)?;
/// # Ok(())
/// # }
///
/// // 现在让我们编写一个测试
/// #[test]
/// fn test_writes_bytes() {
/// // 设置一个真实的文件要比内存中的缓冲区慢得多,让我们用游标代替
/////
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
///
///
///
///
///
///
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug, Default, Eq, PartialEq)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// 创建一个新的游标来包装所提供的底层内存缓冲区。
///
/// 即使底层缓冲区 (例如 [`Vec`]) 不为空,游标的初始位置也为 `0`。
/// 因此,写入游标是从覆盖 [`Vec`] 内容开始的,而不是追加到它的上面。
///
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_io_structs", issue = "78812")]
pub const fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner }
}
/// 消费这个游标,返回底层值。
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn into_inner(self) -> T {
self.inner
}
/// 获取此游标中的底层值的引用。
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_io_structs", issue = "78812")]
pub const fn get_ref(&self) -> &T {
&self.inner
}
/// 获取此游标中底层值的可变引用。
///
/// 应注意避免修改底层值的内部 I/O 状态,因为它可能破坏此游标的位置。
///
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn get_mut(&mut self) -> &mut T {
&mut self.inner
}
/// 返回此游标的当前位置。
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_io_structs", issue = "78812")]
pub const fn position(&self) -> u64 {
self.pos
}
/// 设置此游标的位置。
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn set_position(&mut self, pos: u64) {
self.pos = pos;
}
}
impl<T> Cursor<T>
where
T: AsRef<[u8]>,
{
/// 返回剩余的三个。
///
/// # Examples
///
/// ```
/// #![feature(cursor_remaining)]
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.remaining_slice(), &[1, 2, 3, 4, 5]);
///
/// buff.set_position(2);
/// assert_eq!(buff.remaining_slice(), &[3, 4, 5]);
///
/// buff.set_position(4);
/// assert_eq!(buff.remaining_slice(), &[5]);
///
/// buff.set_position(6);
/// assert_eq!(buff.remaining_slice(), &[]);
/// ```
#[unstable(feature = "cursor_remaining", issue = "86369")]
pub fn remaining_slice(&self) -> &[u8] {
let len = self.pos.min(self.inner.as_ref().len() as u64);
&self.inner.as_ref()[(len as usize)..]
}
/// 如果剩余的 3 为空,则返回 `true`。
///
/// # Examples
///
/// ```
/// #![feature(cursor_remaining)]
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// buff.set_position(2);
/// assert!(!buff.is_empty());
///
/// buff.set_position(5);
/// assert!(buff.is_empty());
///
/// buff.set_position(10);
/// assert!(buff.is_empty());
/// ```
#[unstable(feature = "cursor_remaining", issue = "86369")]
pub fn is_empty(&self) -> bool {
self.pos >= self.inner.as_ref().len() as u64
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Cursor<T>
where
T: Clone,
{
#[inline]
fn clone(&self) -> Self {
Cursor { inner: self.inner.clone(), pos: self.pos }
}
#[inline]
fn clone_from(&mut self, other: &Self) {
self.inner.clone_from(&other.inner);
self.pos = other.pos;
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> io::Seek for Cursor<T>
where
T: AsRef<[u8]>,
{
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let (base_pos, offset) = match style {
SeekFrom::Start(n) => {
self.pos = n;
return Ok(n);
}
SeekFrom::End(n) => (self.inner.as_ref().len() as u64, n),
SeekFrom::Current(n) => (self.pos, n),
};
match base_pos.checked_add_signed(offset) {
Some(n) => {
self.pos = n;
Ok(self.pos)
}
None => Err(io::const_io_error!(
ErrorKind::InvalidInput,
"invalid seek to a negative or overflowing position",
)),
}
}
fn stream_len(&mut self) -> io::Result<u64> {
Ok(self.inner.as_ref().len() as u64)
}
fn stream_position(&mut self) -> io::Result<u64> {
Ok(self.pos)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Read for Cursor<T>
where
T: AsRef<[u8]>,
{
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.remaining_slice(), buf)?;
self.pos += n as u64;
Ok(n)
}
fn read_buf(&mut self, mut cursor: BorrowedCursor<'_>) -> io::Result<()> {
let prev_written = cursor.written();
Read::read_buf(&mut self.fill_buf()?, cursor.reborrow())?;
self.pos += (cursor.written() - prev_written) as u64;
Ok(())
}
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
let mut nread = 0;
for buf in bufs {
let n = self.read(buf)?;
nread += n;
if n < buf.len() {
break;
}
}
Ok(nread)
}
fn is_read_vectored(&self) -> bool {
true
}
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
let n = buf.len();
Read::read_exact(&mut self.remaining_slice(), buf)?;
self.pos += n as u64;
Ok(())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> BufRead for Cursor<T>
where
T: AsRef<[u8]>,
{
fn fill_buf(&mut self) -> io::Result<&[u8]> {
Ok(self.remaining_slice())
}
fn consume(&mut self, amt: usize) {
self.pos += amt as u64;
}
}
// 非调整大小的写实现
#[inline]
fn slice_write(pos_mut: &mut u64, slice: &mut [u8], buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(*pos_mut, slice.len() as u64);
let amt = (&mut slice[(pos as usize)..]).write(buf)?;
*pos_mut += amt as u64;
Ok(amt)
}
#[inline]
fn slice_write_vectored(
pos_mut: &mut u64,
slice: &mut [u8],
bufs: &[IoSlice<'_>],
) -> io::Result<usize> {
let mut nwritten = 0;
for buf in bufs {
let n = slice_write(pos_mut, slice, buf)?;
nwritten += n;
if n < buf.len() {
break;
}
}
Ok(nwritten)
}
/// 保留所需的空间,并在必要时用 0 填充 vec。
fn reserve_and_pad<A: Allocator>(
pos_mut: &mut u64,
vec: &mut Vec<u8, A>,
buf_len: usize,
) -> io::Result<usize> {
let pos: usize = (*pos_mut).try_into().map_err(|_| {
io::const_io_error!(
ErrorKind::InvalidInput,
"cursor position exceeds maximum possible vector length",
)
})?;
// 出于安全原因,我们不希望这些数字溢出,否则我们的分配将不够
//
let desired_cap = pos.saturating_add(buf_len);
if desired_cap > vec.capacity() {
// 我们希望我们的 vec 的总容量有 (pos+buf_len) 字节的空间。
// 保留根据长度中的附加元素进行分配,因此我们需要保留差额
//
//
vec.reserve(desired_cap - vec.len());
}
// 如果 pos 高于当前 len,则填充。
if pos > vec.len() {
let diff = pos - vec.len();
// 不幸的是,`resize()` 就足够了,但优化器没有意识到它确实可以消除 `reserve`。
// 所以我们手动完成以消除额外的分支
//
let spare = vec.spare_capacity_mut();
debug_assert!(spare.len() >= diff);
// 安全性: 我们为此分配了足够的容量。
// 我们只写,不读
unsafe {
spare.get_unchecked_mut(..diff).fill(core::mem::MaybeUninit::new(0));
vec.set_len(pos);
}
}
Ok(pos)
}
/// 将切片写入 vec 而不分配
/// # 安全: vec 必须有 buf.len() 的备用容量
unsafe fn vec_write_unchecked<A>(pos: usize, vec: &mut Vec<u8, A>, buf: &[u8]) -> usize
where
A: Allocator,
{
debug_assert!(vec.capacity() >= pos + buf.len());
vec.as_mut_ptr().add(pos).copy_from(buf.as_ptr(), buf.len());
pos + buf.len()
}
/// 调整 [`Cursor`] 的写入实现
///
/// 游标允许有一个预分配和初始化的 vector 主体,但位置为 0.
/// 这意味着 [`Write`] 将覆盖 vec 的内容。
///
/// 这也允许 vec 主体为空,但位置为 N。
/// 这意味着 [`Write`] 最初会用 0 填充 vec,然后再从该点写入任何内容
///
///
fn vec_write<A>(pos_mut: &mut u64, vec: &mut Vec<u8, A>, buf: &[u8]) -> io::Result<usize>
where
A: Allocator,
{
let buf_len = buf.len();
let mut pos = reserve_and_pad(pos_mut, vec, buf_len)?;
// 写入 buf 然后在必要时向前推进 vec 安全性: 我们确保容量可用并且所有字节都写入到 pos
//
//
unsafe {
pos = vec_write_unchecked(pos, vec, buf);
if pos > vec.len() {
vec.set_len(pos);
}
};
// 让我们前进
*pos_mut += buf_len as u64;
Ok(buf_len)
}
/// 调整 [`Cursor`] 的 write_vectored 实现的大小
///
/// 游标允许有一个预分配和初始化的 vector 主体,但位置为 0.
/// 这意味着 [`Write`] 将覆盖 vec 的内容。
///
/// 这也允许 vec 主体为空,但位置为 N。
/// 这意味着 [`Write`] 最初会用 0 填充 vec,然后再从该点写入任何内容
///
///
fn vec_write_vectored<A>(
pos_mut: &mut u64,
vec: &mut Vec<u8, A>,
bufs: &[IoSlice<'_>],
) -> io::Result<usize>
where
A: Allocator,
{
// 出于安全原因,我们不希望这笔款项永远溢出。
// 如果这个饱和,储备应该 panic 以避免任何不健全的写作。
let buf_len = bufs.iter().fold(0usize, |a, b| a.saturating_add(b.len()));
let mut pos = reserve_and_pad(pos_mut, vec, buf_len)?;
// 写入 buf 然后在必要时向前推进 vec 安全性: 我们确保容量可用并且所有字节都写入到最后一个 pos
//
//
unsafe {
for buf in bufs {
pos = vec_write_unchecked(pos, vec, buf);
}
if pos > vec.len() {
vec.set_len(pos);
}
}
// 让我们前进
*pos_mut += buf_len as u64;
Ok(buf_len)
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Write for Cursor<&mut [u8]> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
slice_write(&mut self.pos, self.inner, buf)
}
#[inline]
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
slice_write_vectored(&mut self.pos, self.inner, bufs)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[stable(feature = "cursor_mut_vec", since = "1.25.0")]
impl<A> Write for Cursor<&mut Vec<u8, A>>
where
A: Allocator,
{
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
vec_write(&mut self.pos, self.inner, buf)
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
vec_write_vectored(&mut self.pos, self.inner, bufs)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Write for Cursor<Vec<u8, A>>
where
A: Allocator,
{
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
vec_write(&mut self.pos, &mut self.inner, buf)
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
vec_write_vectored(&mut self.pos, &mut self.inner, bufs)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[stable(feature = "cursor_box_slice", since = "1.5.0")]
impl<A> Write for Cursor<Box<[u8], A>>
where
A: Allocator,
{
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
slice_write(&mut self.pos, &mut self.inner, buf)
}
#[inline]
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
slice_write_vectored(&mut self.pos, &mut self.inner, bufs)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[stable(feature = "cursor_array", since = "1.61.0")]
impl<const N: usize> Write for Cursor<[u8; N]> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
slice_write(&mut self.pos, &mut self.inner, buf)
}
#[inline]
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
slice_write_vectored(&mut self.pos, &mut self.inner, bufs)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}