表达式
块
块表达式必须在首行 {
后和末行 }
前加换行符,除非根据其他样式规则可以写成单行。
代码块前的关键字(如 unsafe
或 async
)必须与开头的括号在同一行,关键字与开头的括号之间用一个空格隔开。缩进代码块的内容。
fn block_as_stmt() {
a_call();
{
a_call_inside_a_block();
// a comment in a block
the_value
}
}
fn block_as_expr() {
let foo = {
a_call_inside_a_block();
// a comment in a block
the_value
};
}
fn unsafe_block_as_stmt() {
a_call();
unsafe {
a_call_inside_a_block();
// a comment in a block
the_value
}
}
If a block has an attribute, put it on its own line before the block:
fn block_as_stmt() {
#[an_attribute]
{
#![an_inner_attribute]
// a comment in a block
the_value
}
}
Avoid writing comments on the same lines as either of the braces.
Write an empty block as {}
.
Write a block on a single line if:
- it is either used in expression position (not statement position) or is an unsafe block in statement position,
- it contains a single-line expression and no statements, and
- it contains no comments
For a single-line block, put spaces after the opening brace and before the closing brace.
Examples:
fn main() {
// Single line
let _ = { a_call() };
let _ = unsafe { a_call() };
// Not allowed on one line
// Statement position.
{
a_call()
}
// Contains a statement
let _ = {
a_call();
};
unsafe {
a_call();
}
// Contains a comment
let _ = {
// A comment
};
let _ = {
// A comment
a_call()
};
// Multiple lines
let _ = {
a_call();
another_call()
};
let _ = {
a_call(
an_argument,
another_arg,
)
};
}
Closures
Don't put any extra spaces before the first |
(unless the closure is prefixed
by a keyword such as move
); put a space between the second |
and the
expression of the closure. Between the |
s, use function definition syntax,
but elide types where possible.
Use closures without the enclosing {}
, if possible. Add the {}
when you have
a return type, when there are statements, when there are comments inside the
closure, or when the body expression is a control-flow expression that spans
multiple lines. If using braces, follow the rules above for blocks. Examples:
|arg1, arg2| expr
move |arg1: i32, arg2: i32| -> i32 {
expr1;
expr2
}
|| Foo {
field1,
field2: 0,
}
|| {
if true {
blah
} else {
boo
}
}
|x| unsafe {
expr
}
Struct literals
If a struct literal is small, format it on a single line, and do not use a trailing comma. If not, split it across multiple lines, with each field on its own block-indented line, and use a trailing comma.
For each field: value
entry, put a space after the colon only.
Put a space before the opening brace. In the single-line form, put spaces after the opening brace and before the closing brace.
Foo { field1, field2: 0 }
let f = Foo {
field1,
field2: an_expr,
};
Functional record update syntax is treated like a field, but it must never have
a trailing comma. Do not put a space after ..
.
let f = Foo {
field1,
..an_expr
};
Tuple literals
Use a single-line form where possible. Do not put spaces between the opening parenthesis and the first element, or between the last element and the closing parenthesis. Separate elements with a comma followed by a space.
Where a single-line form is not possible, write the tuple across multiple lines, with each element of the tuple on its own block-indented line, and use a trailing comma.
(a, b, c)
let x = (
a_long_expr,
another_very_long_expr,
);
Tuple struct literals
Do not put space between the identifier and the opening parenthesis. Otherwise, follow the rules for tuple literals:
Foo(a, b, c)
let x = Foo(
a_long_expr,
another_very_long_expr,
);
Enum literals
Follow the formatting rules for the various struct literals. Prefer using the name of the enum as a qualifying name, unless the enum is in the prelude:
Foo::Bar(a, b)
Foo::Baz {
field1,
field2: 1001,
}
Ok(an_expr)
Array literals
Write small array literals on a single line. Do not put spaces between the opening square bracket and the first element, or between the last element and the closing square bracket. Separate elements with a comma followed by a space.
If using the repeating initializer, put a space after the semicolon only.
Apply the same rules if using vec!
or similar array-like macros; always use
square brackets with such macros. Examples:
fn main() {
let x = [1, 2, 3];
let y = vec![a, b, c, d];
let a = [42; 10];
}
For arrays that have to be broken across lines, if using the repeating
initializer, break after the ;
, not before. Otherwise, follow the rules below
for function calls. In any case, block-indent the contents of the initializer,
and put line breaks after the opening square bracket and before the closing
square bracket:
fn main() {
[
a_long_expression();
1234567890
]
let x = [
an_expression,
another_expression,
a_third_expression,
];
}
Array accesses, indexing, and slicing.
Don't put spaces around the square brackets. Avoid breaking lines if possible. Never break a line between the target expression and the opening square bracket. If the indexing expression must be broken onto a subsequent line, or spans multiple lines itself, then block-indent the indexing expression, and put newlines after the opening square bracket and before the closing square bracket:
Examples:
fn main() {
foo[42];
&foo[..10];
bar[0..100];
foo[4 + 5 / bar];
a_long_target[
a_long_indexing_expression
];
}
Unary operations
Do not include a space between a unary op and its operand (i.e., !x
, not
! x
). However, there must be a space after &mut
. Avoid line-breaking
between a unary operator and its operand.
Binary operations
Do include spaces around binary ops (i.e., x + 1
, not x+1
) (including =
and other assignment operators such as +=
or *=
).
For comparison operators, because for T op U
, &T op &U
is also implemented:
if you have t: &T
, and u: U
, prefer *t op u
to t op &u
. In general,
within expressions, prefer dereferencing to taking references, unless necessary
(e.g. to avoid an unnecessarily expensive operation).
Use parentheses liberally; do not necessarily elide them due to precedence. Tools should not automatically insert or remove parentheses. Do not use spaces to indicate precedence.
If line-breaking, block-indent each subsequent line. For assignment operators, break after the operator; for all other operators, put the operator on the subsequent line. Put each sub-expression on its own line:
foo_bar
+ bar
+ baz
+ qux
+ whatever
Prefer line-breaking at an assignment operator (either =
or +=
, etc.) rather
than at other binary operators.
Control flow
Do not include extraneous parentheses for if
and while
expressions.
if true {
}
is better than
if (true) {
}
Do include extraneous parentheses if it makes an arithmetic or logic expression
easier to understand ((x * 15) + (y * 20)
is fine)
Function calls
Do not put a space between the function name, and the opening parenthesis.
Do not put a space between an argument, and the comma which follows.
Do put a space between an argument, and the comma which precedes it.
Prefer not to break a line in the callee expression.
Single-line calls
Do not put a space between the function name and open paren, between the open paren and the first argument, or between the last argument and the close paren.
Do not put a comma after the last argument.
foo(x, y, z)
Multi-line calls
If the function call is not small, it would otherwise over-run the max width, or any argument or the callee is multi-line, then format the call across multiple lines. In this case, put each argument on its own block-indented line, break after the opening parenthesis and before the closing parenthesis, and use a trailing comma:
a_function_call(
arg1,
a_nested_call(a, b),
)
Method calls
Follow the function rules for calling.
Do not put any spaces around the .
.
x.foo().bar().baz(x, y, z);
Macro uses
If a macro can be parsed like other constructs, format it like those
constructs. For example, a macro use foo!(a, b, c)
can be parsed like a
function call (ignoring the !
), so format it using the rules for function
calls.
Special case macros
For macros which take a format string, if all other arguments are small, format the arguments before the format string on a single line if they fit, and format the arguments after the format string on a single line if they fit, with the format string on its own line. If the arguments are not small or do not fit, put each on its own line as with a function. For example:
println!(
"Hello {} and {}",
name1, name2,
);
assert_eq!(
x, y,
"x and y were not equal, see {}",
reason,
);
Casts (as
)
Put spaces before and after as
:
let cstr = "Hi\0" as *const str as *const [u8] as *const std::os::raw::c_char;
Chains of fields and method calls
A chain is a sequence of field accesses, method calls, and/or uses of the try
operator ?
. E.g., a.b.c().d
or foo?.bar().baz?
.
Format the chain on one line if it is "small" and otherwise possible to do so.
If formatting on multiple lines, put each field access or method call in the
chain on its own line, with the line-break before the .
and after any ?
.
Block-indent each subsequent line:
let foo = bar
.baz?
.qux();
If the length of the last line of the first element plus its indentation is less than or equal to the indentation of the second line, then combine the first and second lines if they fit. Apply this rule recursively.
x.baz?
.qux()
x.y.z
.qux()
let foo = x
.baz?
.qux();
foo(
expr1,
expr2,
).baz?
.qux();
Multi-line elements
If any element in a chain is formatted across multiple lines, put that element and any later elements on their own lines.
a.b.c()?
.foo(
an_expr,
another_expr,
)
.bar
.baz
Note there is block indent due to the chain and the function call in the above example.
Prefer formatting the whole chain in multi-line style and each element on one line, rather than putting some elements on multiple lines and some on a single line, e.g.,
// Better
self.pre_comment
.as_ref()
.map_or(false, |comment| comment.starts_with("//"))
// Worse
self.pre_comment.as_ref().map_or(
false,
|comment| comment.starts_with("//"),
)
Control flow expressions
This section covers if
, if let
, loop
, while
, while let
, and for
expressions.
Put the keyword, any initial clauses, and the opening brace of the block all on a single line, if they fit. Apply the usual rules for block formatting to the block.
If there is an else
component, then put the closing brace, else
, any
following clause, and the opening brace all on the same line, with a single
space before and after the else
keyword:
if ... {
...
} else {
...
}
if let ... {
...
} else if ... {
...
} else {
...
}
If the control line needs to be broken, prefer to break before the =
in * let
expressions and before in
in a for
expression; block-indent the
following line. If the control line is broken for any reason, put the opening
brace on its own line, not indented. Examples:
while let Some(foo)
= a_long_expression
{
...
}
for foo
in a_long_expression
{
...
}
if a_long_expression
&& another_long_expression
|| a_third_long_expression
{
...
}
Where the initial clause spans multiple lines and ends with one or more closing parentheses, square brackets, or braces, and there is nothing else on that line, and that line is not indented beyond the indent on the first line of the control flow expression, then put the opening brace of the block on the same line with a preceding space. For example:
if !self.config.file_lines().intersects(
&self.codemap.lookup_line_range(
stmt.span,
),
) { // Opening brace on same line as initial clause.
...
}
Single line if else
Put an if else
or if let else
on a single line if it occurs in expression
context (i.e., is not a standalone statement), it contains a single else
clause, and is small:
let y = if x { 0 } else { 1 };
// Examples that must be multi-line.
let y = if something_very_long {
not_small
} else {
also_not_small
};
if x {
0
} else {
1
}
Match
Prefer not to line-break inside the discriminant expression. Always break after the opening brace and before the closing brace. Block-indent the match arms once:
match foo {
// arms
}
let x = match foo.bar.baz() {
// arms
};
Use a trailing comma for a match arm if and only if not using a block.
Never start a match arm pattern with |
:
match foo {
// Don't do this.
| foo => bar,
// Or this.
| a_very_long_pattern
| another_pattern
| yet_another_pattern
| a_fourth_pattern => {
...
}
}
Prefer:
match foo {
foo => bar,
a_very_long_pattern
| another_pattern
| yet_another_pattern
| a_fourth_pattern => {
...
}
}
Avoid splitting the left-hand side (before the =>
) of a match arm where
possible. If the right-hand side of the match arm is kept on the same line,
never use a block (unless the block is empty).
If the right-hand side consists of multiple statements, or has line comments, or the start of the line does not fit on the same line as the left-hand side, use a block. Do not flatten a right-hand side block containing a single macro call because its expanded form could contain a trailing semicolon.
Block-indent the body of a block arm.
Examples:
match foo {
foo => bar,
a_very_long_pattern | another_pattern if an_expression() => {
no_room_for_this_expression()
}
foo => {
// A comment.
an_expression()
}
foo => {
let a = statement();
an_expression()
}
bar => {}
// Trailing comma on last item.
foo => bar,
baz => qux!(),
lorem => {
ipsum!()
}
}
If the body is a single expression with no line comments and not a control flow expression, start it on the same line as the left-hand side. If not, then it must be in a block. Example:
match foo {
// A combinable expression.
foo => a_function_call(another_call(
argument1,
argument2,
)),
// A non-combinable expression
bar => {
a_function_call(
another_call(
argument1,
argument2,
),
another_argument,
)
}
}
Line-breaking
If using a block form on the right-hand side of a match arm makes it possible to avoid breaking on the left-hand side, do that:
// Assuming the following line does not fit in the max width
a_very_long_pattern | another_pattern => ALongStructName {
...
},
// Prefer this
a_very_long_pattern | another_pattern => {
ALongStructName {
...
}
}
// To splitting the pattern.
Never break after =>
without using the block form of the body.
If the left-hand side must be split and there is an if
clause, break before
the if
and block indent. In this case, always use a block body and start the
body on a new line:
a_very_long_pattern | another_pattern
if expr =>
{
...
}
If required to break the pattern, put each clause of the pattern on its own
line with no additional indent, breaking before the |
. If there is an if
clause, use the above form:
a_very_long_pattern
| another_pattern
| yet_another_pattern
| a_forth_pattern => {
...
}
a_very_long_pattern
| another_pattern
| yet_another_pattern
| a_forth_pattern
if expr =>
{
...
}
If the pattern is multi-line, and the last line is less wide than the indent, do
not put the if
clause on a new line. E.g.,
Token::Dimension {
value,
ref unit,
..
} if num_context.is_ok(context.parsing_mode, value) => {
...
}
If every clause in a pattern is small, but the whole pattern does not fit on
one line, then format the pattern across multiple lines with as many clauses
per line as possible. Again, break before a |
:
foo | bar | baz
| qux => {
...
}
We define a pattern clause to be small if it fits on a single line and matches "small" in the following grammar:
small:
- small_no_tuple
- unary tuple constructor: `(` small_no_tuple `,` `)`
- `&` small
small_no_tuple:
- single token
- `&` small_no_tuple
E.g., &&Some(foo)
matches, Foo(4, Bar)
does not.
Combinable expressions
Where a function call has a single argument, and that argument is formatted across multiple-lines, format the outer call as if it were a single-line call, if the result fits. Apply the same combining behaviour to any similar expressions which have multi-line, block-indented lists of sub-expressions delimited by parentheses (e.g., macros or tuple struct literals). E.g.,
foo(bar(
an_expr,
another_expr,
))
let x = foo(Bar {
field: whatever,
});
foo(|param| {
action();
foo(param)
})
let x = combinable([
an_expr,
another_expr,
]);
let arr = [combinable(
an_expr,
another_expr,
)];
Apply this behavior recursively.
For a function with multiple arguments, if the last argument is a multi-line closure with an explicit block, there are no other closure arguments, and all the arguments and the first line of the closure fit on the first line, use the same combining behavior:
foo(first_arg, x, |param| {
action();
foo(param)
})
Ranges
Do not put spaces in ranges, e.g., 0..10
, x..=y
, ..x.len()
, foo..
.
When writing a range with both upper and lower bounds, if the line must be broken within the range, break before the range operator and block indent the second line:
a_long_expression
..another_long_expression
For the sake of indicating precedence, if either bound is a compound
expression, use parentheses around it, e.g., ..(x + 1)
, (x.f)..(x.f.len())
,
or 0..(x - 10)
.
Hexadecimal literals
Hexadecimal literals may use upper- or lower-case letters, but they must not be mixed within the same literal. Projects should use the same case for all literals, but we do not make a recommendation for either lower- or upper-case.
Patterns
Format patterns like their corresponding expressions. See the section on
match
for additional formatting for patterns in match arms.