统计学
集中趋势度量
本节实例计算 Rust 数组中包含的数据集的集中趋势度量。对于一个空的数据集,可能没有平均数、中位数或众数去计算,因此每个函数都返回 [Option
] ,由调用者处理。
第一个实例是通过对数据引用生成一个迭代器,然后计算平均数(所有测量值的总和除以测量值的计数),并使用 [sum
] 和 [len
] 函数分别确定值的总和及值的计数。
fn main() { let data = [3, 1, 6, 1, 5, 8, 1, 8, 10, 11]; let sum = data.iter().sum::<i32>() as f32; let count = data.len(); let mean = match count { positive if positive > 0 => Some(sum / count as f32), _ => None }; println!("Mean of the data is {:?}", mean); }
第二个实例使用快速选择算法(quick select algorithm)计算中位数,该算法只对已知可能包含中位数的数据集的分区进行排序,从而避免了完整[排序][sort
]。该算法使用 [cmp
] 和 [Ordering
] 简便地地决定要检查的下一个分区,并使用 [split_at
] 为每个步骤的下一个分区选择一个任意的枢轴量。
use std::cmp::Ordering; fn partition(data: &[i32]) -> Option<(Vec<i32>, i32, Vec<i32>)> { match data.len() { 0 => None, _ => { let (pivot_slice, tail) = data.split_at(1); let pivot = pivot_slice[0]; let (left, right) = tail.iter() .fold((vec![], vec![]), |mut splits, next| { { let (ref mut left, ref mut right) = &mut splits; if next < &pivot { left.push(*next); } else { right.push(*next); } } splits }); Some((left, pivot, right)) } } } fn select(data: &[i32], k: usize) -> Option<i32> { let part = partition(data); match part { None => None, Some((left, pivot, right)) => { let pivot_idx = left.len(); match pivot_idx.cmp(&k) { Ordering::Equal => Some(pivot), Ordering::Greater => select(&left, k), Ordering::Less => select(&right, k - (pivot_idx + 1)), } }, } } fn median(data: &[i32]) -> Option<f32> { let size = data.len(); match size { even if even % 2 == 0 => { let fst_med = select(data, (even / 2) - 1); let snd_med = select(data, even / 2); match (fst_med, snd_med) { (Some(fst), Some(snd)) => Some((fst + snd) as f32 / 2.0), _ => None } }, odd => select(data, odd / 2).map(|x| x as f32) } } fn main() { let data = [3, 1, 6, 1, 5, 8, 1, 8, 10, 11]; let part = partition(&data); println!("Partition is {:?}", part); let sel = select(&data, 5); println!("Selection at ordered index {} is {:?}", 5, sel); let med = median(&data); println!("Median is {:?}", med); }
最后一个实例使用可变的 [HashMap
] 来计算众数,[fold
] 和 [entry
] API 用来从集合中收集每个不同整数的计数。[HashMap
] 中最常见的值可以用 [max_by_key
] 取得。
use std::collections::HashMap; fn main() { let data = [3, 1, 6, 1, 5, 8, 1, 8, 10, 11]; let frequencies = data.iter().fold(HashMap::new(), |mut freqs, value| { *freqs.entry(value).or_insert(0) += 1; freqs }); let mode = frequencies .into_iter() .max_by_key(|&(_, count)| count) .map(|(value, _)| *value); println!("Mode of the data is {:?}", mode); }
计算标准偏差
本实例计算一组测量值的标准偏差和 z 分数(z-score)。
标准偏差定义为方差的平方根(用 f32 浮点型的 [sqrt
] 计算),其中方差是每个测量值与平均数
之间的平方差的和
除以测量次数。
z 分数(z-score)是指单个测量值偏离数据集平均数
的标准差数。
fn mean(data: &[i32]) -> Option<f32> { let sum = data.iter().sum::<i32>() as f32; let count = data.len(); match count { positive if positive > 0 => Some(sum / count as f32), _ => None, } } fn std_deviation(data: &[i32]) -> Option<f32> { match (mean(data), data.len()) { (Some(data_mean), count) if count > 0 => { let variance = data.iter().map(|value| { let diff = data_mean - (*value as f32); diff * diff }).sum::<f32>() / count as f32; Some(variance.sqrt()) }, _ => None } } fn main() { let data = [3, 1, 6, 1, 5, 8, 1, 8, 10, 11]; let data_mean = mean(&data); println!("Mean is {:?}", data_mean); let data_std_deviation = std_deviation(&data); println!("Standard deviation is {:?}", data_std_deviation); let zscore = match (data_mean, data_std_deviation) { (Some(mean), Some(std_deviation)) => { let diff = data[4] as f32 - mean; Some(diff / std_deviation) }, _ => None }; println!("Z-score of data at index 4 (with value {}) is {:?}", data[4], zscore); }