组合算子:map

match 是处理 Option 的一个可用的方法,但你会发现大量使用它会很繁琐,特别是当操作只对一种输入是有效的时。这时,可以使用组合算子(combinator),以模块化的风格来管理控制流。

Option 有一个内置方法 map(),这个组合算子可用于 Some -> SomeNone -> None 这样的简单映射。多个不同的 map() 调用可以串起来,这样更加灵活。

在下面例子中,process() 轻松取代了前面的所有函数,且更加紧凑。

#![allow(dead_code)]

#[derive(Debug)] enum Food { Apple, Carrot, Potato }

#[derive(Debug)] struct Peeled(Food);
#[derive(Debug)] struct Chopped(Food);
#[derive(Debug)] struct Cooked(Food);

// 削皮。如果没有食物,就返回 `None`。否则返回削好皮的食物。
fn peel(food: Option<Food>) -> Option<Peeled> {
    match food {
        Some(food) => Some(Peeled(food)),
        None       => None,
    }
}

// 切食物。如果没有食物,就返回 `None`。否则返回切好的食物。
fn chop(peeled: Option<Peeled>) -> Option<Chopped> {
    match peeled {
        Some(Peeled(food)) => Some(Chopped(food)),
        None               => None,
    }
}

// 烹饪食物。这里,我们使用 `map()` 来替代 `match` 以处理各种情况。
fn cook(chopped: Option<Chopped>) -> Option<Cooked> {
    chopped.map(|Chopped(food)| Cooked(food))
}

// 这个函数会完成削皮切块烹饪一条龙。我们把 `map()` 串起来,以简化代码。
fn process(food: Option<Food>) -> Option<Cooked> {
    food.map(|f| Peeled(f))
        .map(|Peeled(f)| Chopped(f))
        .map(|Chopped(f)| Cooked(f))
}

// 在尝试吃食物之前确认食物是否存在是非常重要的!
fn eat(food: Option<Cooked>) {
    match food {
        Some(food) => println!("Mmm. I love {:?}", food),
        None       => println!("Oh no! It wasn't edible."),
    }
}

fn main() {
    let apple = Some(Food::Apple);
    let carrot = Some(Food::Carrot);
    let potato = None;

    let cooked_apple = cook(chop(peel(apple)));
    let cooked_carrot = cook(chop(peel(carrot)));

    // 现在让我们试试看起来更简单的 `process()`。
    let cooked_potato = process(potato);

    eat(cooked_apple);
    eat(cooked_carrot);
    eat(cooked_potato);
}

参见:

闭包, Option, 和 Option::map()